Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (4): 507-514    DOI: 10.11867/j.issn.1001-8166.2014.04.0507
研究论文     
高寒区典型下垫面水文功能小流域观测试验研究
陈仁升, 阳勇, 韩春坛, 刘俊峰, 康尔泗, 宋耀选, 刘章文
中国科学院寒区旱区环境与工程研究所黑河上游生态—水文试验研究站, 甘肃 兰州 730000
Field Experimental Research on Hydrological Function over Several Typical Underlying Surfaces in the Cold Regions of Western China
Chen Rensheng, Yang Yong, Han Chuntan, Liu Junfeng, Kang Ersi, Song Yaoxuan, Liu Zhangwen
Qilian Alpine Ecology and Hydrology Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(4707 KB)   HTML
摘要:

中国高寒区以草原、草甸、寒漠和荒漠等下垫面为主(87.7%), 但这些下垫面在流域水循环中的作用及其差异尚不很明确。为此在祁连山葫芦沟小流域布设了系统对比观测试验, 试验点、小流域尺度4年冻土—植被—大气传输系统及水量平衡观测和模拟结果以及其他相关研究成果表明, 各下垫面径流系数可粗略排序为: 冰川> 寒漠> 沼泽化草甸> 山坡灌丛> 草甸> 草原> 森林; 高山寒漠带(占中国西部高寒区面积的12%)应为山区流域的主要产流区, 而高寒草甸/草原区(约占高寒区面积的64%)径流贡献较少, 其水源涵养功能大于水文功能; 据此推断, 若全球变暖引起植被带上移, 则高山区流域的蒸散发/降水比例可能增大、径流系数变小。

关键词: 径流系数野外试验景观带高寒区全球变暖    
Abstract:

In the cold regions of western China, underlying surfaces are mainly (87.7%) composed of grassland, meadow and desert. However, the hydrological functions of these landtypes are unclear and lacking in adequate measured data. Based on the 4-year (2009-2012) observation work at point scale, small watershed scale and simulation results from Soil-Vegetation-Atmosphere Transfer (SVAT) system, it concludes that the alpine desert should be the primary runoff production area, which takes part 12% of high-cold region. While the alpine grassland and meadow (taking about 64%) contribute to the watershed runoff a little, its ecological function is more evident than its hydrological function. Combined with other research results in the literature, runoff coefficient for different landsacpes can be sorted as: glacier>cold desert>swamp meadow>hill slope shrub>meadow>alpine grassland>forest. If the vegetation belt moves upward under the global warming, the runoff coefficient will decrease in the alpine watershed of China.

Key words: High-cold region    Field experiment    Global warming    Runoff coefficient    Landscape pattern
收稿日期: 2014-01-10 出版日期: 2014-04-10
:  P332  
基金资助:

国家自然科学基金优秀青年科学基金项目“寒区水文学”(编号:41222001); 国家自然科学基金重大研究计划项目“黑河寒区水文过程小流域综合观测与模拟”(编号:91025011)资助.

作者简介: 陈仁升(1974-), 男, 山东沂水人, 研究员, 主要从事寒区水文观测与模拟研究
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
康尔泗
韩春坛
刘俊峰
陈仁升
宋耀选
阳勇
刘章文

引用本文:

陈仁升, 阳勇, 韩春坛, 刘俊峰, 康尔泗, 宋耀选, 刘章文. 高寒区典型下垫面水文功能小流域观测试验研究[J]. 地球科学进展, 2014, 29(4): 507-514.

Chen Rensheng, Yang Yong, Han Chuntan, Liu Junfeng, Kang Ersi, Song Yaoxuan, Liu Zhangwen. Field Experimental Research on Hydrological Function over Several Typical Underlying Surfaces in the Cold Regions of Western China. Advances in Earth Science, 2014, 29(4): 507-514.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.04.0507        http://www.adearth.ac.cn/CN/Y2014/V29/I4/507

[1] Stern N. The Economics of Climate Change: The Stern Review[M]. Cambridge: Cambridge University Press, 2007.
[2] Peterson B J, Holmes R M, McClell J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002, 298: 2 171-2 173.
[3] Ding Yongjian, Xiao Cunde. Challenges in the study of cryospheric changes and their impacts[J]. Advances in Earth Science, 2013, 28(10):1 067-1 076. [丁永建, 效存德. 冰冻圈变化及其影响研究的主要科学问题概论[J]. 地球科学进展, 2013, 28(10):1 067-1 076. ]
[4] Chen R, Kang E, Ji X, et al. Cold regions in China[J]. Cold Regions Science and Technology, 2006, 45: 95-102.
[5] Chen Rensheng, Han Chuntan. Hydrology, ecology and climate significance and its research progress of the alpine cold desert[J]. Advances in Earth Science, 2010, 25(3):255-263. [陈仁升, 韩春坛. 高山寒漠带水文、生态和气候意义及其研究进展[J]. 地球科学进展, 2010, 25(3):255-263. ]
[6] Yao Tandong, Liu Shiyin, Pu Jianchen, et al. Retreat of high asia glacier and its affection to water resources in Northeast of China[J]. Science in China(Series D), 2004, 34 (6): 535-543. [姚檀栋, 刘时银, 蒲健辰, 等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学:D辑, 2004, 34 (6): 535-543. ]
[7] Kang Ersi, Chen Rensheng, Zhang Zhihui, et al. Some problems facing hydrological and ecological researches in the mountain watershed at the upper stream ofan inland river basin[J]. Advances in Earth Science, 2008, 23(7):675-681. [康尔泗, 陈仁升, 张智慧, 等. 内陆河流域山区水文与生态研究[J]. 地球科学进展, 2008, 23(7):675-681. ]
[8] Ye Baisheng, Ding Yongjian, Liu Chaohai. Response of valley glaciers in various size and their runoff to climate change[J]. Journal of Glaciology and Geocryology, 2001, 23(2):103-110. [叶柏生, 丁永建, 刘潮海. 不同规模山谷冰川及其径流对气候变化的响应过程[J]. 冰川冻土, 2001, 23(2):103-110. ]
[9] Yang Z. Glacier meltwater runoff in China and its nourishment to river[J]. Chinese Geographical Science, 1995, 5: 66-76.
[10] Liu Shiyu, Zuo Changqing. A review of vegetation impacts to runoff[J]. Territory & Natural Resources Study, 2005, (1): 42-44. [刘士余, 左长清. 植被对径流影响的研究综述[J]. 国土与自然资源研究, 2005, (1): 42-44. ]
[11] Yang Yonggang, Xiao Honglang, Zhao Liangju. Research advances in ecohydrological process and ecohydrological function[J]. Journal of Desert Research, 2011, 31(5):1 242-1 246. [杨永刚, 肖洪浪, 赵良菊. 流域生态水文过程与功能研究进展[J]. 中国沙漠, 2011, 31(5):1 242-1 246. ]
[12] Jin Bowen, Kang Ersi, Song Kechao, et al. Eco-hydrological function of mountain vegetation in the Hei River Basin, Northwest China[J]. Journal of Glaciology and Geocryology, 2003, 25(5): 580-584. [金博文, 康尔泗, 宋克超, 等. 黑河流域山区植被生态水文功能的研究[J]. 冰川冻土, 2003, 25(5): 580-584. ]
[13] Liu Xingming, Liu Xiande, Che Zongxi, et al. Eco-hydrological functions of the moss layer in Picea crassifolia forest of Qilian Mountains[J]. Arid Land Geography, 2010, 33(6):962-967. [刘兴明, 刘贤德, 车宗玺, 等. 祁连山青海云杉林区苔藓层对流域水文的影响[J]. 干旱区地理, 2010, 33(6):962-967. ]
[14] He Z, Zhao W, Liu H, et al. Effect of forest on annual water yield in the mountains of an arid inland river basin: A case study in the Pailugou catchment on northwestern China’s Qilian Mountains[J]. Hydrological Processes, 2012, 26: 613-621.
[15] Liu Zhangwen, Chen Rensheng, Song Yaoxuan, et al. Characteristics of rainfall interception for four typical shrubs in Qilian Mountain[J]. Acta Ecological Sinica, 2012, 32(4): 1 337-1 346. [刘章文, 陈仁升, 宋耀选, 等. 祁连山典型灌丛降雨截留特征初步研究[J]. 生态学报, 2012, 32(4):1 337-1 346. ]
[16] Li C W, Ge J P, Liu S R, et al. Landscape pattern and eco-hydrological characteristics at the upstream of Minjiang River[J]. Frontiers of Biology in China, 2006, 1(4) : 455- 462.
[17] Qin Jia, Ding Yongjian, Ye Baisheng, et al. Regulaing effects of mountain landscapes on river runoff in Northwest China[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 397-404. [秦甲, 丁永建, 叶柏生, 等. 中国西北山地景观要素对河川径流的影响作用分析[J]. 冰川冻土, 2011, 33(2): 397-404. ]
[18] Chen R, Song Y, Kang E, et al. A cryosphere-hydrology observation system in a small alpine watershed of Qilian Mountains in China and its meteorology gradient[J]. Arctic, Antarctic and Alpine Research, 2014, in press.
[19] Yang Yong, Chen Rensheng, Ji Xibin, et al. Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China[J]. Advances in Water Science, 2010, 21(1):32-36. [阳勇, 陈仁升, 吉喜斌, 等. 黑河高山草甸冻土带水热传输过程[J]. 水科学进展, 2010, 21(1):32-36. ]
[20] Yang Yong, Chen Rensheng. Research review on hydrology in the permafrost and seasonal frozen regions[J]. Advances in Earth Science, 2011, 26(7): 712-723. [阳勇, 陈仁升. 冻土水文研究进展[J]. 地球科学进展, 2011, 26(7): 712-723. ]
[21] Jansson P E, Moon D S. A coupled model of water, heat and mass transfer using object orientation to imp rove flexibility and functionality[J]. Environmental Modeling & Software, 2001, 16: 37-42.
[22] Yang Yong. Performafost Hydrology Observation and Mornitoring[D]. Beijing: University of Chinese Academy of Sciences, 2013. [阳勇. 冻土水文多尺度观测与模拟[D]. 北京:中国科学院大学, 2013. ]
[23] Han Chuntan, Chen Rensheng, Liu Junfeng, et al. Hydrological characteristics in non-freezing period at the alpine desert zone of Hulugou watershed[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1 536-1 544. [韩春坛, 陈仁升, 刘俊峰, 等. 祁连山葫芦沟流域高山寒漠带非冻结期水文特征[J]. 冰川冻土, 2013, 35(6): 1 536-1 544. ]
[24] Yang Yonggang, Xiao Honglang, Zhao Liangju, et al. Hydrological processes in different landscapes on Mafengou River Basin[J]. Advances in Water Science, 2011, 22(5): 624-630. [杨永刚, 肖洪浪, 赵良菊, 等. 马粪沟流域不同景观带水文过程[J]. 水科学进展, 2011, 22(5): 624-630. ]
[25] Liu Yanguang. Using Hydrochemical and Isotope Tracers Analying to Delineate Hydrologic Process in Cold Alpine Watershed in Rainy Season[D]. Wuhan: China University of Geosciences, 2013. [刘彦广. 基于水化学和同位素的高寒山区雨季径流过程示踪[D]. 武汉:中国地质大学, 2013. ]
[26] Wang Genxu, Shen Yongping, Qian Ju, et al. Study on the influence of vegetation change on soil moisture cycle in alpine meadow[J]. Journal of Glaciology and Geocryology, 2003, 25(6):643-658. [王根绪, 沈永平, 钱鞠, 等. 高寒草地植被覆盖变化对土壤水分循环影响研究[J]. 冰川冻土, 2003, 25(6):643-658. ]
[27] Chen Rensheng, Kang Ersi, Ji Xibin, et al. Preliminary study of the hydrological processes in the alpine meadow and permafrost regions at the headwaters of Heihe River[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 387-396. [陈仁升, 康尔泗, 吉喜斌, 等. 黑河源区高山草甸的冻土及水文过程初步研究[J]. 冰川冻土, 2007, 29(3): 387-396. ]
[28] Yang Yong. Measurement and Simulation of Soil-Vegetation-Atmosphere Transfer System in the Typical Underlying Surfaces at the Headwaters of Heihe River Basin[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2011. [阳勇. 寒区典型下垫面 SVATs 对比观测与模拟[D]. 北京:中国科学院研究生院, 2011. ]
[29] Zhu Baowen, Chang Youkui, Ma Xiaohong, et al. Some characteristic analysis on surface runoff of alpine meadow grassland[J]. Journal of Anhui Agricultural Sicences, 2008, 36(13) : 5 588- 5 590. [朱宝文, 常有奎, 马晓虹, 等. 高寒草甸草原地表径流的若干特征分析[J]. 安徽农业科学, 2008, 36(13) : 5 588- 5 590. ]
[30] Shi Zhongjie, Wang Yanhui, Xu Lihong, et al. Effect of topographic form and vegetation type on the runoff coefficient in the Xiangshuihe watershed of Liupan Mountains[J]. Science of Soil and Water Conservation, 2009, 7(4):31-37. [时忠杰, 王彦辉, 徐丽宏, 等. 六盘山香水河小流域地形与植被类型对降雨径流系数的影响[J]. 中国水土保持科学, 2009, 7(4):31-37. ]
[31] Wang Chao. The Impact of Vegetation Change on Runoff Process in Tianlaochi Catchment in Heihe River Basin[D]. Lanzhou: Lanzhou University, 2013. [王超. 黑河上游天老池流域植被变化对降雨径流过程影响研究[D]. 兰州: 兰州大学, 2013. ]
[32] Huang Mingbin, Kang Shaozhong, Li Yushan. A comparis on of hydrological behaviors of forest and grassland watersheds in gully region of the Loess Plateau[J]. Journal of Natural Resources, 1999, 14(3) : 226-231. [黄明斌, 康绍忠, 李玉山. 黄土高原沟壑区森林和草地小流域水文行为的比较研究[J]. 自然资源学报, 1999, 14(3) : 226-231. ]
[33] Tape K, Sturm M, Racine C. The evidence for shrub expansion in Northern Alaska and the Pan-Arictic[J]. Global Change Biology, 2006, 12: 686-702.
[34] Kaplan J O, New M. Arcitc climate change with a 2 ℃ global warming: Timing, climate patterns and vegetation change[J]. Climate Change, 2006, 79(3/4): 213-241.
[35] Lenoir J, Gegout J C, Marque P A, et al. A significant upward shift in plact species optimum elevation during the 20th century[J]. Science, 2008, 320: 1 768-1 771.
[36] Wang Genxu, Li Yuanshou, Wang Yibo. Land Surface Proceess An Environmental Change in the River Sources of Tibet Plateau[M]. Beijing :Science Press, 2010. [王根绪, 李元寿, 王一博. 青藏高原河源区地表过程与环境变化[M]. 北京:科学出版社, 2010. ]
[37] Wang Genxu, Li Yuanshou, Wu Qingbai, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Science in China(Series D), 2006, 49(11): 1 156-1 169.
[38] Li Yingnian, Zhao Xinquan, Zhao Liang, et al. Analysis of vegetation succession and climate change in Haibei alpine marsh in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2003, 25(3):243-249. [李英年, 赵新全, 赵亮, 等. 祁连山海北高寒湿地气候变化及植被演替分析[J]. 冰川冻土, 2003, 25(3):243-249. ]
[39] Yan Jianzhong, Zhang Yili, Bai Wanqi, et al. Land cover changes based on plant successions: Deforestation, rehabilitation and degeneration of forest in the upper Dadu River watershed[J]. Science in China(Series D), 2005, 48(12): 2 214-2 230.
[40] Guo Yaqi. Simulation Study of Climate Change Impact on Vegetation Succession and Productivity in Tibet Plateau[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. [郭亚奇. 气候变化对青藏高原植被演替和生产力影响的模拟[D]. 北京:中国农业科学院, 2012. ]
[41] Wang Genxu, Li Yuanshou, Wang Yibo, et al. Impacts of alpine ecosystem and climate changes on surface runoff in the headwaters of the Yangtze River[J]. Journal of Glaciology and Geocryology, 2007, 29(2):159-168. [王根绪, 李元寿, 王一博, 等. 江源区高寒生态与气候变化对河流径流过程的影响分析[J]. 冰川冻土, 2007, 29(2):159-168. ]
[1] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[2] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[3] 陈幸荣, 蔡怡, 谭晶, 黄勇勇, 汪雷. 全球变暖hiatus现象的研究进展[J]. 地球科学进展, 2014, 29(8): 947-955.
[4] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[5] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[6] 王会军. 东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J]. 地球科学进展, 2010, 25(6): 563-570.
[7] 苗爱梅,武捷,贾利冬. 1958—2008年山西气温变化的特征及趋势研究[J]. 地球科学进展, 2010, 25(3): 264-272.
[8] 陈泮勤,程邦波,王芳,曲建升. 全球气候变化的几个关键问题辨析[J]. 地球科学进展, 2010, 25(1): 69-75.
[9] 曾静静,曲建升,张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4): 436-443.
[10] 蓝永超,胡兴林,肖洪浪,林纾. 全球变暖情景下黑河山区水循环要素变化研究[J]. 地球科学进展, 2008, 23(7): 739-747.
[11] 曲建升,曾静静,张志强. 国际主要温室气体排放数据集比较分析研究[J]. 地球科学进展, 2008, 23(1): 47-54.
[12] 陈仁升,吕世华,康尔泗,吉喜斌,阳勇,张济世. 内陆河高寒山区流域分布式水热耦合模型(Ⅰ):模型原理[J]. 地球科学进展, 2006, 21(8): 806-818.
[13] 姜彤,施雅风. 全球变暖、长江水灾与可能损失[J]. 地球科学进展, 2003, 18(2): 277-284.
[14] 方修琦,余卫红. 物候对全球变暖响应的研究综述[J]. 地球科学进展, 2002, 17(5): 714-719.
[15] 王宁练,姚檀栋. 20世纪全球变暖的冰冻圈证据[J]. 地球科学进展, 2001, 16(1): 98-105.