地球科学进展 ›› 2020, Vol. 35 ›› Issue (9): 902 -911. doi: 10.11867/j.issn.1001-8166.2020.074

所属专题: “火星地貌”虚拟专刊

综述与评述 上一篇    下一篇

火星风条痕特征及其形成机制
董治宝( ),吕萍,李超,胡光印   
  1. 陕西师范大学行星风沙科学研究院,陕西 西安 710119
  • 收稿日期:2020-05-28 修回日期:2020-08-25 出版日期:2020-09-10
  • 基金资助:
    国家自然科学基金项目“塔里木盆地周围干燥剥蚀山地风化速率研究”(41930641);“巴丹吉林沙漠高大沙山系统的形成”(41871008)

Characteristics and Formation Mechanism of Wind Streaks on Mars

Zhibao Dong( ),Lü Ping,Chao Li,Guangyin Hu   

  1. Planetary Aeolian Research Institute,Shaanxi Normal University,Xi'an 710119,China
  • Received:2020-05-28 Revised:2020-08-25 Online:2020-09-10 Published:2020-10-28
  • About author:Dong Zhibao (1966-), male, Hengshan County, Shaanxi Province, Professor. Research areas include aeolian geomorphology and physics of blown sand. E-mail: zbdong@snnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Weathering rate of the dry denudated mountains surrounding the Tarim Basin"(41930641);"Formation of the meagadune system in China's Badain Jaran Sand Sea"(41871008)

风条痕是一系列风成特征的总称,表现为与周围背景显著的反照率差异,具有二维平面形状,不具有三维形态,在火星上广泛分布,对火星表面风场乃至全球环流特征具有良好的指示作用,但对其的研究长期被忽视。基于已有研究成果,总结了火星风条痕的类型、形状特征及其形成机制。根据反照率大小及其与障碍物的关系,火星风条痕可以分为6种基本类型:亮色风条痕、暗色风条痕、混合风条痕、黑斑状及其相关的条痕、沙丘尾部条痕和霜冻风条痕,其中,亮色和暗色风条痕最普遍、最具代表性,是火星表面最普遍的多变特征。火星风条痕主要分布于60°S~60°N,不同类型风条痕分布特征稍有差异。因赖以形成的障碍物特征复杂多样,火星风条痕具有多种平面形状,如锥形、扇形、卵形和平行状等。根据火星风条痕沉积物特征与风沙蚀积的关系,亮色风条痕一般为堆积型风条痕,而暗色风条痕则属于风蚀型风条痕。目前,关于亮色风条痕为堆积型认识比较一致,而将暗色风条痕归为风蚀型尚有争议。在缺乏火星气象观测资料的情况下,根据风条痕走向反演火星表面风场特征具有良好的可靠性,并有助于理解地质历史时期风对火星表面的改造作用。

Wind streaks with two-dimensional plane shapes are a collective term for a variety of aeolian features that display distinctive albedo surface patterns and they do not have three-dimensional shape. Wind streaks are widely distributed on Mars, and are good proxy indicators of the surface wind regime, and even of global circulation patterns on Mars. However, the study on wind streaks has been largely ignored for a long time. Based on published studies, this paper summarized the types, morphology and formation mechanism of wind streaks. According to the relationship between albedo and obstacles, wind streaks can be divided into six basic types: bright wind streaks, dark wind streaks, mixed-tone wind streaks, splotches and related wind streaks, dune shadow wind streaks and frost wind streaks, of which the bright and dark streaks are the most common and representative, for they are the most abundant types of variable features on Mars. Wind streaks are primarily distributed in the latitudinal zone between 60°S and 60°N with little difference among different types, and they have many shapes such as tapered, fan, oval and parallel shapes due to the diverse obstacles. Considering the relationship between sediment characteristics and aeolian erosion and deposition, bright wind streaks are generally depositional with a consensus and dark streaks are erosional with a controversy. In the absence of Martian meteorological observation data, the retrieval of surface wind regime based on the orientation of wind streaks has good reliability, which helps to understand the modifications of Martian surfaces by wind in the geological context.

中图分类号: 

表1 火星风条痕分类方案 [ 12 ]
Table 1 Classification of Martian wind streaks [ 12 ]
类型 障碍物种类或 风条痕形状 形状描述 长度/km 出现地点 时空变化
亮色风条痕 陨击坑、山丘、陡坡型 泪珠状、锥形、平行状、扇形 5~25 中低纬度地区 小幅变化,夏季主要位于南半球
槽沟型 锯齿状、线形、不规则形 10~100 叙利亚高原(Syria Planum)、夜迷宫(Labyrinthus Noctis)、科普莱特斯(Coprates) 快速变化,夏、秋季主要位于南半球
片状 锯齿状、线形、不规则形 10~100 叙利亚高原(Syria Planum)、夜迷宫(Labyrinthus Noctis)、科普莱特斯(Coprates) 快速变化,夏、秋季主要位于南半球
暗色风条痕 陨击坑、陡坡型 扇形、锥形 10~30 25°~40°S,平坦地区 约在沙尘暴发生之后100天
融合型 不规则形 5~150 萨西斯(Tharsis)、大瑟提斯(Syrtis Major)的区域性山坡 与陨击坑、陡坡型类似,大多发生在沙尘暴之后,也有一些发生在其他时间
线型 线形

长5~100

宽0.1~4.0

散布 资料不足
混合风条痕 陨击坑型 泪珠状和锥形 5~20 大瑟提斯(Syrtis Major)、萨西斯欧克西亚沼泽(Tharsis Oxia Palus) 资料不足
黑斑状及其相关的风条痕 陨击坑斑点型 平行状和锥形 5~100 科柏洛斯(Cerberus) 偶发,夏季位于南半球
霜冻风条痕 陨击坑型 泪珠状和锥形 5~30 纬度55°~70°的极冠区域 随CO2霜冠的出现而出现
沙丘尾部风条痕 陨击坑型 泪珠状 5~20 北极沙丘区 资料不足
图1 火星风条痕典型类型
(a) 亮色风条痕(HiRISE影像:ESP_040963_1960_RED, NASA/JLP/University of Arizona);(b) 暗色风条痕(CTX影像:K03_054573_1665_XN_13S143W, NASA/JLP/Malin Space Science System);(c) 混合风条痕(CTX影像:J07_047417_1605_XI_19S246W, NASA/JLP/Malin Space Science System);(d) 黑斑点状风条痕(THEMIS Day IR影像, Astrogeology Science Center, USGS);(e) 沙丘尾部风条痕(CTX影像:P02_001709_2578_XN_77N149W, NASA/JLP/ Malin Space Science System);(f) 霜冻风条痕(HiRISE影像:ESP_020742_0925_RED, NASA/JLP/University of Arizona)
Fig.1 Typical types of wind streaks on Mars
(a) Bright wind streaks (HiRISE image:ESP_040963_1960_RED, NASA/JLP/University of Arizona); (b) Dark wind streaks (CTX image:K03_054573_1665_XN_13S143W, NASA/JLP/Malin Space Science System); (c) Mixed-tone wind streaks (CTX image:J07_047417_1605_XI_19S246W, NASA/JLP/Malin Space Science System); (d) Splotches wind streaks (THEMIS Day IR image, Astrogeology Science Center, USGS);(e) Dune shadow wind streaks (CTX image:P02_001709_2578_XN_77N149W, NASA/JLP/ Malin Space Science System);(f) Frost wind streaks (HiRISE image:ESP_020742_0925_RED, NASA/JLP/University of Arizona)
图2 火星陨击坑风条痕的纬向分布(据参考文献[ 18 ]修改)
Fig.2 Latitude distribution of wind streaks in Martian cratersmodified after reference 18 ])
图3 风条痕特征参数的定义(据参考文献[ 17 ]修改)
θ 是风条痕的角宽度,指风条痕张开的最大角度; ?是风条痕的伸展方向,从正北方向顺时针旋转至角宽度的平分线处所对应的角度
Fig.3 Definition of characteristic parameters of wind streaksmodified after reference 17 ])
θ is the angular width (maximum whole angle measured along the sides of the streak); ? is the direction of wind streaks (defined as the bisector of the angular width from north)
图4 火星风条痕长度概率分布(据参考文献[ 17 ]修改)
Fig.4 Probability distribution of wind streak lengthmodified after reference 17 ])
图5 火星风条痕长度/陨击坑直径值(L/D)的概率分布(据参考文献[ 17 ]修改)
Fig.5 Probability distribution of streak length to crater diameter ratio (L/D)(modified after reference 17 ])
图6 火星风条痕角宽度概率分布(据参考文献[ 17 ]修改)
Fig.6 Probability distribution of wind streak widthsmodified after reference 17 ])
图7 火星鹰陨击坑附近风棱石岩尾、平原沙波纹、坑内沙波纹和风条痕走向的对比(据参考文献[ 22 ]修改)
Fig.7 Comparation on the orientations of ventifact rock tails, plains ripples, crater floor ripples and wind streaks on the ?oor of the Eagle cratermodified after reference 22 ])
图8 火星风条痕平均方向的全球分布(据参考文献[ 20 ]修改)
(a)“海盗号”(Viking)数据,1977 年沙尘暴之后;(b)“水手号”(Mariner)数据(1971—1972年),黑色圆圈区域为根据“海盗号”影像获得的全球沙尘暴发生之前的风条痕走向
Fig.8 Global distribution of wind streak orientationmodified after reference 20 ])
(a) Viking data after the sand storm in 1977;(b)Mariner data between 1971 and 1972, areas that were imaged by Viking before the global dust storms are marked with black circles
图9 库姆塔格沙漠北部的舌状风条痕(“羽毛状”沙丘的“羽毛”部分)
Fig.9 Tongue shaped wind streaks in the northern part of the Kumtagh Desert the "feathery" part of "feathery" dunes
1 Dundas C M. An aeolian grainflow model for Martian recurring slope lineae [J]. Icarus, 2020, 343: 113681.
2 Greeley R. Introduction to Planetary Geomorphology [M]. Cambridge, UK: Cambridge University Press, 2013.
3 Cohen-Zada A L, Blumberg D G, Maman S. Earth and planetary aeolian streaks: A review [J]. Aeolian Research, 2016, 20: 108-125.
4 Sagan C, Pollack J B. Windblown dust on Mars [J]. Nature, 1969, 223: 791-794.
5 Sagan C, Veverka J, Fox P, et al. Variable features on Mars: Preliminary mariner 9 television results [J]. Icarus, 1972, 17(2): 346-372.
6 Sagan C. Sandstorms and eolian erosion on Mars [J]. Journal of Geophysical Research (1896-1977), 1973, 78(20): 4 155-4 161.
7 Cohen-Zada A L, Maman S, Blumberg D G. Earth aeolian wind streaks: Comparison to wind data from model and stations [J]. Journal of Geophysical Research: Planets, 2017, 122(5): 1 119-1 137.
8 Greeley R, Skypeck A, Pollack J B. Martian aeolian features and deposits: Comparisons with general circulation model results [J]. Journal of Geophysical Research: Planets, 1993, 98(E2): 3 183-3 196.
9 Greeley R, Schubert G, Limonadi D, et al. Wind streaks on Venus: Clues to atmospheric circulation [J]. Science, 1994, 263(5 145): 358.
10 Fenton L K, Richardson M I. Martian surface winds: Insensitivity to orbital changes and implications for aeolian processes [J]. Journal of Geophysical Research: Planets, 2001, 106(E12): 32 885-32 902.
11 Greeley R, Thompson S D. Mars: Aeolian features and wind predictions at the Terra Meridiani and Isidis Planitia potential Mars Exploration Rover landing sites [J]. Journal of Geophysical Research: Planets, 2003, 108(E12): 8 093.
12 Greeley R, Iversen J D. Wind as a Geological Process: On Earth, Mars, Venus and Titan [M]. New York: Cambridge University Press, 1985.
13 Thomas P, Veverka J, Lee S, et al. Classification of wind streaks on Mars [J]. Icarus, 1981, 45(1): 124-153.
14 Arvidson R E. Wind-blown streaks, splotches, and associated craters on Mars: Statistical analysis of Mariner 9 photographs [J]. Icarus, 1974, 21(1): 12-27.
15 Gifford F A, Hosker R P, Rao K S. Diffusion-deposition patterns in Martian streaks [J]. Icarus, 1978, 36(1): 133-146.
16 Greeley R, Papson R, Veverka J. Crater streaks in the Chryse Planitia region of Mars: Early Viking results [J]. Icarus, 1978, 34(3): 556-567.
17 Veverka J, Cook K, Goguen J. A statistical study of crater-associated wind streaks in the North Equatorial Zone of Mars [J]. Icarus, 1978, 33(3): 466-482.
18 Thomas P, Veverka J, Gineris D, et al. Dust streaks on Mars [J]. Icarus, 1984, 60(1): 161-179.
19 Greeley R, Iversen J D, Pollack J B, et al. Wind tunnel simulations of light and dark streaks on Mars [J]. Science, 1974, 183(4 127): 847.
20 Thomas P, Veverka J. Seasonal and secular variation of wind streaks on Mars: An analysis of Mariner 9 and Viking data [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B14): 8 131-8 146.
21 Veverka J, Gierasch P, Thomas P. Wind streaks on Mars: Meteorological control of occurence and mode of formation [J]. Icarus, 1981, 45(1): 154-166.
22 Sullivan R, Banfield D, Bell J F, et al. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site [J]. Nature, 2005, 436(7 047): 58-61.
23 Peterfreund A R. Visual and infrared observations of wind streaks on Mars [J]. Icarus, 1981, 45(2): 447-467.
24 Geissler P E, Johnson J R, Sullivan R, et al. First in situ investigation of a dark wind streak on Mars [J]. Journal of Geophysical Research: Planets, 2008, 113(E12): E12S31.
25 Greeley R, Kraft M D, Kuzmin R O, et al. Mars pathfinder landing site: Evidence for a change in wind regime from lander and orbiter data [J]. Journal of Geophysical Research: Planets, 2000, 105(E1): 1 829-1 840.
26 Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian Geomorphology of the Kumtagh Desert[M]. Beijing:Science Press,2011.
董治宝,苏志珠,钱广强,等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社,2011.
[1] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[4] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[5] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[6] 许浩,张君峰,汤达祯,尹微,陈艳鹏,林文姬. 低压油气藏形成机制研究现状及发展趋势[J]. 地球科学进展, 2009, 24(5): 506-511.
[7] 任留东;陈炳蔚. 高喜马拉雅变质岩“夕线石带”的地质意义[J]. 地球科学进展, 2004, 19(5): 715-721.
[8] 顾朝林,张敏. 长江三角洲都市连绵区性状特征与形成机制研究[J]. 地球科学进展, 2001, 16(3): 332-338.
阅读次数
全文


摘要