地球科学进展 ›› 2013, Vol. 28 ›› Issue (8): 930 -938. doi: 10.11867/j.issn.1001-8166.2013.08.0930

全球变化研究 上一篇    下一篇

气候政策建模研究综述:基于文献计量分析
魏一鸣,米志付,张皓   
  1. 1. 北京理工大学能源与环境政策研究中心,北京 100081;
    2.北京理工大学管理与经济学院,北京 100081
  • 收稿日期:2013-05-01 修回日期:2013-06-27 出版日期:2013-08-10
  • 基金资助:

    中国科学院战略先导项目“我国及世界主要国家历史排放发展轨迹及相关影响因素分析”(编号:XDA05150600);国家自然科学基金重大国际合作项目“气候变化对社会经济系统易损性影响分析方法及其应用研究”(编号:71020107026)资助.

Review on Climate Policy Modeling: An Analysis Based on Bibliometrics Method

Wei Yiming, Mi Zhifu, Zhang Hao   

  1. 1.Center for Energy and Environmental Policy Research,Beijing Institute of Technology,Beijing 100081,China;
    2.School of Management and Economics, Beijing Institute of Technology, Beijing 100081,China
  • Received:2013-05-01 Revised:2013-06-27 Online:2013-08-10 Published:2013-08-10

利用SCI-E和SSCI网络版数据库,使用文献计量方法对1981—2012年间气候政策建模领域的科学产出进行分析。通过对气候政策建模领域的基本特征分析,发现气候政策建模是一个多学科交叉的领域;发达国家在此领域的实力明显强于发展中国家,欧美占据主导地位。通过对关键词的词频分析,发现气候政策建模领域的6个研究热点:减排机制、不确定性、成本效益分析、发展情景、技术进步和公平性。分析还发现,此领域最主流的分析框架是综合评估模型,最主要的模型方法有最优化模型、可计算一般均衡模型和模拟模型;行为模型和数据包络分析模型具有很强的应用潜力。通过对中国在该领域国际地位的分析,提出了该领域发展的相关建议。

Based on the online version of SCI-E from 1981 to 2012 and SSCI from 2002 to 2012, this study applies bibliometrics method to analyze the scientific production of climate policy modeling. By analyzing the basic characteristics of climate policy modeling, it is found that climate policy modeling is a kind of interdisciplinary field, involving environmental science, economic, meteorology and atmospheric science, geoscience, and management science. Developed countries have much stronger strength than developing countries, and the United States and Europe have the total predominance in this field. By frequency analysis of keywords, six hot research topics in climate policy modeling are summarized including greenhouse gas reduction, uncertainty, costbenefit analysis, development scenario, technical change and equity. In addition, Integrated Assessment Model (IAM) is the most popular framework in climate policy modeling, and three main modeling methods are optimization models, Computable General Equilibrium (CGE) Models and Simulation Models. In the future, Behavior Models and Data Envelopment Analysis (DEA) Models may have great application potential. Based on the synthetic analysis of Chinese research in climate policy modeling, this study gives several suggestions on the development in this field. Firstly, China should improve both quality and quantity of publications in this field. Secondly, China should train a group of scientific research personnel who concentrate on climate policy modeling. Thirdly, China should establish some specialized journals of this field, or drive related journals to pay attention to this field.

中图分类号: 

[1]Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs[J]. Marine and Freshwater Research, 1999, 50(8): 839-866.

[2]IPCC. Climate Change 2007: Synthesis Report[M]. Cambridge: Cambridge University Press, 2007.

[3]Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416(6 879): 389-395.

[4]Watson R T. Climate change: The political situation[J]. Science, 2003, 302(5 652): 1 925-1 926.

[5]Stern N. The Economics of Climate Change: The Stern Review[M]. Cambridge: Cambridge University Press, 2007.

[6]IPCC. Climate Change 2001: Impacts, Adaptation and Vulnerability[M]. Cambridge: Cambridge University Press, 2001.

[7]IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability[M]. Cambridge: Cambridge University Press, 2007.

[8]Murphy J M, Sexton D M H, Barnett D N, et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations[J]. Nature, 2004, 430(7 001): 768-772.

[9]Stocker T F. Climate change: Models change their tune[J]. Nature, 2004, 430(7 001): 737-738.

[10]Dowlatabadi H, Morgan M G. Integrated assessment of climate change[J]. Science, 1993, 259(5 103): 1 813-1 814.

[11]Kerr R A. Global change: Research council says US climate models can’t keep up[J]. Science, 1999, 283(5 403): 766-767.

[12]Dowlatabadi H. Integrated assessment models of climate change: An incomplete overview[J]. Energy Policy, 1995, 23(4/5): 289-296.

[13]Wang Can, Chen Jining, Zou Ji. Discussion on methematical model in climate policy study[J]. Shanghai Environmental Sciences, 2002, (7): 435-439,454-458.[王灿, 陈吉宁, 邹骥. 气候政策研究中的数学模型评述[J]. 上海环境科学, 2002, (7): 435-439,454-458.]

[14]Li J, Wang M  H, Ho Y  S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis[J]. Global and Planetary Change, 2011, 77(1/2): 13-20.

[15]Bjurstrom A, Polk M. Climate change and interdisciplinarity: A co-citation analysis of IPCC third assessment report[J]. Scientometrics, 2011, 87(3): 525-550.

[16]Gucinski H, Lackey R T, Spence B C. Global climate change: Policy implications for fisheries[J]. Fisheries, 1990, 15(6): 33-38.

[17]Idso S B. Shortcomings of CO2-climate models raise questions about the wisdom of energy policy implications[J]. Applied Energy, 1984, 16(1): 53-57.

[18]Mehos G J, Ramirez W F. Use of optimal control theory to optimize carbon dioxide miscible-flooding enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 1989, 2(4): 247-260.

[19]Sallis J F, Bauman A, Pratt M. Environmental and policy: Interventions to promote physical activity[J]. American Journal of Preventive Medicine, 1998, 15(4): 379-397.

[20]Katz R W, Brown B G. Extreme events in a changing climate: Variability is more important than averages[J]. Climatic Change, 1992, 21(3): 289-302.

[21]Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth’s climate system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 1 786-1 793.

[22]Giorgi F, Mearns L O. Approaches to the simulation of regional climate change: A review[J]. Reviews of Geophysics, 1991, 29(2): 191-216.

[23]Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change[J]. Science, 2003, 299(5 615): 2 005-2 010.

[24]Cubasch U, Hasselmann K, Hock H, et al. Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model[J]. Climate Dynamics, 1992, 8(2): 55-69.

[25]Araujo M B, New M. Ensemble forecasting of species distributions[J]. Trends in Ecology & Evolution, 2007, 22(1): 42-47.

[26]Stern D I. The rise and fall of the environmental Kuznets curve[J]. World Development, 2004, 32(8): 1 419-1 439.

[27]Held I M, Soden B J. Water vapor feedback and global warming[J]. Annual Review of Energy and the Environment, 2000, 25: 441-475.

[28]Duarte C M. The future of seagrass meadows[J]. Environmental Conservation, 2002, 29(2): 192-206.

[29]Pizer W A. Combining price and quantity controls to mitigate global climate change[J]. Journal of Public Economics, 2002, 85(3): 409-434.

[30]Nordhaus W D. After Kyoto: Alternative mechanisms to control global warming[J]. The American Economic Review, 2006, 96(2): 31-34.

[31]Tol R S J. Is the uncertainty about climate change too large for expected cost-benefit analysis?[J].Climatic Change, 2003, 56(3): 265-289.

[32]Webster M, Forest C, Reilly J, et al. Uncertainty analysis of climate change and policy response[J]. Climatic Change, 2003, 61(3): 295-320.

[33]Maddison D. A cost-benefit-analysis of slowing climate-change[J]. Energy Policy, 1995, 23(4/5):337-346.

[34]van den Bergh J. Optimal climate policy is a utopia: From quantitative to qualitative cost-benefit analysis[J]. Ecological Economics, 2004, 48(4): 385-393.

[35]Riahi K, Grubler A, Nakicenovic N. Scenarios of long-term socio-economic and environmental development under climate stabilization[J]. Technological Forecasting and Social Change, 2007, 74(7): 887-935.

[36]Hulme M, Dessai S. Negotiating future climates for public policy: A critical assessment of the development of climate scenarios for the UK[J]. Environmental Science & Policy, 2008, 11(1): 54-70.

[37]van der Zwaan B C C, Gerlagh R, Klaassen G, et al. Endogenous technological change in climate change modelling[J].Energy Economics, 2002, 24(1): 1-19.

[38]Popp D. ENTICE: Endogenous technological change in the DICE model of global warming[J]. Journal of Environmental Economics and Management, 2004, 48(1): 742-768.

[39]Lange A, Vogt C, Ziegler A. On the importance of equity in international climate policy: An empirical analysis[J]. Energy Economics, 2007, 29(3): 545-562.

[40]Dasgupta P. Discounting climate change[J]. Journal of Risk and Uncertainty, 2008, 37(2/3): 141-169.

[1] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[2] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[3] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[4] 艾鑫,马明国,王雪梅,匡鸿海. 全球地球科学研究的可视化分析[J]. 地球科学进展, 2020, 35(12): 1270-1280.
[5] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[6] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[7] 高春东,吴秀平. 基于文献计量的水治理研究国际发展态势分析[J]. 地球科学进展, 2019, 34(3): 324-332.
[8] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
[9] 王金平, 曲建升, 马金珠. 基于文献计量的国际虚拟水研究发展态势分析[J]. 地球科学进展, 2018, 33(6): 653-663.
[10] 马学成, 巩杰, 柳冬青, 张金茜. 社会生态系统研究态势:文献计量分析视角[J]. 地球科学进展, 2018, 33(4): 435-444.
[11] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[12] 宋世雄, 刘志锋, 何春阳, 赵瑞, 任强. 城市扩展过程对自然生境影响评价的研究进展[J]. 地球科学进展, 2018, 33(10): 1094-1104.
[13] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
[14] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
[15] 於维樱, 冯志纲, 王琳. 加拿大海洋学研究态势与最新进展分析[J]. 地球科学进展, 2016, 31(5): 542-552.
阅读次数
全文


摘要