地球科学进展 ›› 2013, Vol. 28 ›› Issue (2): 269 -281. doi: 10.11867/j.issn.1001-8166.2013.02.0269

所属专题: IODP研究

IODP研究 上一篇    下一篇

南塔斯曼海隆2 Ma以来碳酸钙沉积记录及其对环流系统和轨道周期的响应
胡正莹 1,王汝建 1*,李文宝 2   
  1. 1.同济大学海洋地质国家重点实验室,上海 200092;2.内蒙古农业大学水利与土木建筑工程学院, 内蒙古 呼和浩特 010018
  • 收稿日期:2013-01-16 修回日期:2013-01-24 出版日期:2013-02-10
  • 通讯作者: 王汝建(1959-),男,云南昆明人,教授,主要从事海洋地质学、古海洋学与古气候学研究.E-mail:rjwang@tongji.edu.cn E-mail:rjwang@tongji.edu.cn
  • 基金资助:

    南北极环境综合考察与评估专项“2013年度南极周边海域海洋地质考察”(编号:CHINARE2013-01-02)和“2013南极环境综合分析与评价”(编号:CHINARE-2013-04-01);中国地质调查局项目“应对全球气候变化地质研究”(编号:12120113006200)资助.

A CaCO 3 Deposition Record During the Last 2 Ma in Southern Tasman Rise of Southern Ocean and Its Responses to the Circulation System and Orbital Cycles

Hu Zhengying 1, Wang Rujian 1, Li Wenbao 2   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;
    2.Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Huhhot 010018, China
  • Received:2013-01-16 Revised:2013-01-24 Online:2013-02-10 Published:2013-02-10

南大洋CaCO3沉积在记录生物泵调节大气CO2的同时,也记录了南大洋表层锋面系统和深部环流格局的重要转变。通过南塔斯曼海ODP 1170站位2 Ma以来CaCO3 %和MAR-CaCO3的研究发现,CaCO3 %以冰期低和间冰期高的“大西洋”型溶解作用旋回为主,并以MIS 34/35期(约1.15 Ma BP)和MIS 14/15期(约0.55 Ma BP)为界线,表现出3种沉积模式。而MAR-CaCO3以MIS 57/58,21/22,13/14和11/12为界表现出“两高三低”5个阶段。CaCO3 %与轨道参数ETP和底栖有孔虫δ18O的交叉频谱和小波分析显示,其主导周期明显具有从40 ka向100 ka转变的中更新世气候转型(MPT)特征,转型起始与终止时间为1.15~0.55 Ma BP。CaCO3沉积模式的转变与南大洋太平洋区西风带和环南极表层锋面系统的迁移密切相关,在时间上与MPT同步。MPT时期,西风带和环南极表层锋面系统的快速南北迁移,导致CaCO3沉积受到硅质和陆源物质稀释作用的影响。而MAR-CaCO3的阶段性变化主要与南大洋深层环流的变化格局和水团化学性质的变化有关。在1.5~0.85 Ma BP期间,南大洋太平洋区深层水通风增强,利于CaCO3的保存和埋藏,MAR-CaCO3增加;在0.85~0.55 Ma BP期间,CO 32-处于不饱和状态的CDW增强,导致南大洋深部CaCO3溶解作用增强,溶跃面上升,MAR-CaCO3降低。

The Southern Ocean CaCO3 deposition not only records the processes of the biological pump modulating atmospheric CO2, but also the changes in Southern Ocean surface frontal system and the structure of deep ocean circulation. CaCO3% and its mass accumulation rate (MAR) changes at Tasman Sea site ODP 1170 during the past 2 Ma indicate a “Atlantic-style” feature with low CaCO3% during glacials and high during interglacials. Three  sedimentary regimes are presented roughly bounded by MIS 34/35 (1.15 Ma BP) and MIS 14/15 (0.55 Ma BP); and the MAR-CaCO3 represents five phases fluctuation. Cross-spectrum and wavelet analysis of CaCO3% and orbital parameters ETP, and benthic  δ18O records show clear Mid-Pleistocene Transition (MPT) pattern of the main cyclicity transits from 40 ka to 100 ka, from 1.15 to 0.55 Ma BP. The changes in CaCO3 deposition are closely related to the changes in Southern Westerlies and Antarctic Circumpolar Current(ACC) frontal system, and synchronous with the MPT. During the MPT, the rapid migration of the Southern Westerlies and ACC frontal system resulted in the dilution effect of siliceous deposition and terrigeneous input to the CaCO3 deposition. The MAR-CaCO3 variability is related to the changes in deepwater structure and its chemical properties. At 1.5~0.85 Ma BP, Southern Ocean deep water ventilation was enhanced, which favored the preservation of CaCO3 and increased the MAR-CaCO3; at  0.85~0.55 Ma BP, CO2-3 depleted Circumpolar Deep Water was enhanced, resulting in the dissolution of CaCO3, and the rise of lysocline and decrease of MAR-CaCO3.

中图分类号: 

[1]Ansorge I J, Speich S, Lutjeharms J R E, et al. Monitoring the oceanic flowbetween Africa and Antarctica: Report of the first Goodhope cruise[J]. South African Journal of Science,2005, 101: 29-34.

[2]Orr J C, Monfray P, Maier-Reimer E. Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models[J]. Global Biogeochemical Cycle, 2001, 15: 43-60.

[3]Wang Pinxian, Jian Zhimin, Zhao Quanhong, et al. Evolution of the South China Sea and monsoon history revealed in deep-sea records[J]. Chinese Science Bulletin, 2003, 48(23): 2 549-2 561.[汪品先, 翦知湣, 赵泉鸿, 等. 南海演变与季风历史的深海证据[J]. 科学通报, 2003, 48(21): 2 228- 2 239.]

[4]Diekmann B, Kuhn G. Sedimentary record of the mid-Pleistocene climate transition in the southeastern South Atlantic (ODP Site 1090)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2002, 182: 241-258.

[5]Diekmann B. Sedimentary patterns in the late Quaternary Southern Ocean[J]. Deep-Sea Research II,2007, 54: 2 350-2 366.

[6]Berger W H, Jansen E. Mid-Pleistocene climate shift: The Nansen connection, in the Polar Oceans and their role in shaping the global environment[J]. Geophysical Monograph Series, 1994, 85: 295-311.

[7]Pisias N G, Moore T C. The evolution of Pleistocene climate: A time series approach[J].Earth Planet Science Letters, 1981, 52: 450-458.

[8]Bard E, Rickaby R E M. Migration of the subtropical front as a modulator of glacial climate[J]. Nature Letters, 2009, 460: 380-384.

[9]Toggweiler J R. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water[J]. Paleoceanography, 1999, 14: 571-588.

[10]Sigman D, Boyle E. Glacial-interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407: 859-869.

[11]Keeling R, Stephens B. Antarctic sea ice and the control of Pleistocene climate instability[J]. Paleoceanography, 2001, 16: 112-131.

[12]Sigman D, Jaccard S L, Haug G. Polar ocean stratification in a cold climate[J]. Nature, 2004, 428: 59-63.

[13]Sexton P F, Barker S. Onset of ‘Pacific-style’ deep-sea sedimentary carbonate cycles at the mid-Pleistocene transition[J]. Earth and Planetary Science Letters,2012, 81/94: 321-322.

[14]Howard W R, Prell W L. Late Quaternary carbonate production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycle[J]. Paleoceanography, 1994, 9: 453-482.

[15]Hodell D A, Venz K A, Charles C D, et al. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(1): 1-19.

[16]Ballegeer A M, Flores J A, Sierro F J, et al. Monitoring fluctuations of the Subtropical Front in the Tasman Sea between 3.45 and 2.45 Ma (ODP site 1172)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313/314: 215-224.

[17]Sikes E L, Howard W R, Samson C R, et al. Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary[J]. Paleoceanography, 2009,24:2 201-2 214.

[18]Withworth III T. The Antarctic circumpolar current[J]. Oceanic, 1988, 31(2):53-58.

[19]Cunningham S A, Alderson S G, King B A, et al. Transport and variability of the Antarctic Circumpolar Current in Drake passage[J]. Journal of Geophysical Research, 2003, 108: PA8084

[20]Orsi A H, Whitworth T, Nowlin W D, et al. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep-Sea Research I,1995, 42: 641-673.

[21]Rintoul S, Sokolov S. Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE Repeat Section SR3)[J]. Journal of Geophysical Research, 2001,106,(C2): 2 815-2 832.

[22]Anderson R F, Chase Z , Fleisher M Q, et al. The Southern Ocean’s biological pump during the Last Clacial maximum[J]. Deep-Sea Research II, 2002,49:1 909-1 938.

[23]Broecker W S. The great ocean conveyor[J]. Oceanography,1991, 4:79-89.

[24]Rahmstorf S. Ocean circulation and climate during the past 120 000 years[J]. Nature, 2002,419:207-214.

[25]Nees S, Armand L, Deckker P D, et al. A diatom and benthic foraminiferal record from the South Tasman Rise (southeastern Indian Ocena): Implications for palaeoceanographic changes for the last 200 000 years[J]. Marine Micropaleontology, 1999,38:69-89.

[26]Catubig N R, Archer D E, Francois R. Global deep-sea burial rate of calcium carbonate during the Last Glacial maximum[J]. Paleoceanography, 1998,13:298-310.

[27]Sykes T J S, Ramsay R A M. Calculation of mass accumulation rates in the absence of density or porosity Measurements[J]. Marine Geology, 1995,122:173-179.

[28]Bostock H C, Hayward B W, Neil H L, et al. Deep-water carbonate concentrations in the southwest Pacific[J]. Deep-sea Research I, 2011,58:72-85.

[29]Ruddiman W. Earth’s Climate: Past and Future[M]. New York: W. H. Freeman and Company, 2000:174-192.

[30]Paillard D, Labeyrie L,Yiou P. Macintosh program performs time-series analysis[J]. EOS, Transaction Amerion Geopysical Union,1996,77:379.

[31]Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic  δ18O records[J]. Paleoceanography, 2005,20:1 003-1 020.

[32]Stant S A, Lara J, McGonigal K L, et al. Quaternary nannofossil biostratigraphy from ocean drilling program leg 189, Tasmanian Gateway[J]. Proceedings of the Ocean Prilling Program, Scientific Results, 2004,189:1-26.

[33]Zhao Quanhong, Jian Zhimin,Li Baohua, et al. Pleistocene microtektites in deep-sea sediment of Nansha[J]. Science in China (Series D),1999, 29: 45-49.[赵泉鸿, 翦知湣, 李保华, 等. 南沙深海沉积中的中更新世微玻陨石[J]. 中国科学:D辑, 1999, 29: 45-49.]

[34]Li Chunlai, Ouyang Ziyuan. (Micro) Tektites research progress[J].Chinese Science Bulletin,1997, 42: 1 681-1 695.[李春来, 欧阳自远. (微)玻璃陨石研究进展[J]. 科学通报, 1997, 42: 1 681-1 695.]

[35]Li Wenbao. The Paleoceangraphic Records During the Last 2 Ma in Southern Tasman Sea of Southern Ocean and Comparison Between High Latitude and Low Latitude Oceans[D]. Shanghai: Tongji University, 2010.[李文宝. 南大洋南塔斯曼海2 Ma以来的古海洋学记录及高、低纬海域的对比[D]. 上海: 同济大学, 2010.]

[36]Imbrie J, Berger A, Boyle E A, et al. On the structure and origin of major glaciation cycles: The 1 00 000 year cycle[J]. Paleoceanography,1993, 8: 699-735.

[37]Holbourn A, Kuhnt W, Kawamura H, et al. Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian throughflow variability during the past 460 ka[J].Paleoceanography,2005, 20: PA3002.

[38]Schmieder F, Dobeneck T V, Bleil U. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interim state and terminal event[J]. Earth and Planetary Science Letters,2000, 179: 539-549.

[39]Becquey S, Gersonde R. Past hydrographic and climatic changes in the Subantarctic Zone of the South Atlantic: The Pleistocene record from ODP Site 1090[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182: 221-239.

[40]Broecker W S, Denton G H. The role of ocean-atmosphere reorganizations in glacial cycles[J]. Geochimica et Cosmochimica Acta, 1989, 53: 2 465-2 501.

[41]Shackleton N J. The 100 000 year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289: 1 897-1 902.

[42]Clark P U, Pollard D. Origin of the middle Pleistocene transition by ice sheet erosion of regolith[J]. Paleoceanography, 1998, 13: 1-9.

[43]Hall I R, McCave I N, Shackleton N J, et al. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times[J]. Nature, 2001, 412: 809-812.

[44]Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages[J]. Paleoceanography, 2006, 21: PA00-1 154.

[45]Toggweiler J R. Shifting westerlies[J]. Science, 2009, 323: 1 434-1 435.

[46]Shindell D T, Schmidt G A. Southern Hemisphere climate response to ozone changes and greenhouse gas increases[J]. Geophysical Research Letters, 2004, 31,L18209,doi:10.1029/2004G2020724.

[47]Carter L, McCave L N, Williams M J M. Circulation and water masses of the Southern Ocean: A review[G]∥Fabio Florindo, Martin Siegert, eds. Developments in Earth and Environmental Sciences: Antarctic Climate Evolution. The Netherlands:Elsevier,  2009, 8: 85-114.

[48]Russell J L, Dixon K W, Gnanadesikan A, et al. The Southern Hemisphere Westerlies in a warming world: Propping open the door to the deep ocean[J]. Journal of Climate, 2006, 19:6 382-6 390.

[49]Williams G P, Bryan K. Ice age winds: An aquaplanet model[J]. Journal of Climate, 2006, 19: 1 706-1 715.

[50]Sigman D M, Boer A M, Haug G H. Antarctic stratification, atmospheric water vapor, and Heinrich events: A hypothesis for late Pleistocene deglaciations[J]. Geophysical Monograph Search, 2007, 173: 335-349.

[51]Adkins J F, McIntyre K, Schrag D P. The salinity, temperature, and δ18O of the glacial deep ocean[J]. Science,2002, 298: 1 769-1 773.

[52]Moore J K, Abbott M R, Richman J G,et al. The Southern Ocean at the last glacial maximum: A strong sink for atmospheric carbon dioxide[J]. Global Biogeochemology Cycles, 2000, 14: 455-475.

[53]Denton G H. Does an asymmetric thermohaline-icesheet oscillator drive 100 000-yr glacial cycles[J]. Journal of Quaternary Science, 2000, 15: 301-318.

[54]Miller K G, Browning J V, Aubry M P, et al. Eocene-Oligocene global climate and sea-level changes[J]. Geological society of America Bulletin, 2008, 120: 34-53.

[55]Hodell D A, Venz K A. Late Neogene history of deepwater ventilation in the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7 (9): PA1211.

[56]Kwon E Y, Sarmiento J L, Toggweiler J R,et al. The control of atmospheric pCO2 by ocean ventilation change: The effect of the oceanic storage of biogenic carbon[J]. Global Biogeochemical Cycles,2011, 25: GB3026.

[57]Crundwell M P, Scott G H, Naish T R, et al. Glacial-interglacial ocean climate variability from planktonic foraminifera during the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site 1123[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2008, 260(1/2): 202-229.

[58]Martnez G A, Rosell M A, Geibert  W, et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma[J]. Paleoceanography, 2009, 24: PA001657.

[59]Li Wenbao, Wang Rujian, Xiang Fei,et al. 800 ka since Southern Tasman Sea of sea surface temperature and subtropical front migration history[J]. Chinese Science Bulletin,2010, 55(24): 2 413-2 421.[李文宝, 王汝建, 向霏, 等. 南塔斯曼海800 ka以来的海水表层温度与亚热带锋迁移历史[J]. 科学通报, 2010, 55 (24): 2 413-2 421.]

[60]Raymo M E, Oppo D W, Curry W. The mid-Pleistocenec limate transition: A deep sea carbon isotopic perspective[J]. Paleoceanography,1997, 12 (4): 546-559.

[1] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[2] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[3] 张麋鸣,陈立奇,汪建君. 南大洋二甲基硫海—气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015-1024.
[4] 张介霞, 詹力扬, 陈立奇. 南大洋N 2O研究进展及测量新技术展望 *[J]. 地球科学进展, 2013, 28(11): 1201-1208.
[5] 马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.
[6] 马浩,李春. 南大洋淡水通量的气候效应研究进展[J]. 地球科学进展, 2010, 25(2): 140-146.
[7] 周琴;赵进平;何宜军. 南极绕极波研究综述[J]. 地球科学进展, 2004, 19(5): 761-766.
[8] 张武昌,孙松. 铁假说和HNLC海区的现场铁加富实验[J]. 地球科学进展, 2002, 17(4): 613-616.
阅读次数
全文


摘要