地球科学进展, 2020, 35(3): 259-274 DOI: 10.11867/j.issn.1001-8166.2020.029

综述与评述

石墨化碳质物质拉曼光谱温度计原理与应用

田野,, 田云涛,

中山大学地球科学与工程学院,广东 广州 510275

Fundamentals and Applications of Raman Spectroscopy of Carbonaceous Material(RSCM)Thermometry

Tian Ye,, Tian Yuntao,

School of Earth Science and Engineering, Sun Yat-Sen University, Guangzhou 519082, China

通讯作者: 田云涛(1984-),男,安徽淮南人,教授,主要从事构造地质与热年代学研究. E-mail:tianyuntao@mail.sysu.edu.cn

收稿日期: 2020-01-13   修回日期: 2020-02-28   网络出版日期: 2020-04-09

基金资助: 国家自然科学基金项目“龙门山新生代构造格架的横向差异:来自三维热—动力模拟的制约”.  41772211

Corresponding authors: Tian Yuntao (1984-), male, Huainan City, Anhui Province, Professor. Research areas include structural geology and thermochronology. E-mail:tianyuntao@mail.sysu.edu.cn

Received: 2020-01-13   Revised: 2020-02-28   Online: 2020-04-09

作者简介 About authors

田野(1996-),男,河南息县人,博士研究生,主要从事构造地质学研究.E-mail:tiany45@mail2.sysu.edu.cn

TianYe(1996-),male,XixianCounty,HenanProvince,Ph.Dstudent.Researchareasincludestructuralgeology.E-mail:tiany45@mail2.sysu.edu.cn

摘要

总结了石墨化碳质物质拉曼光谱温度计的原理、样品制备、测试流程、影响因素和地质应用。该温度计基于沉积岩变质过程中发生的不可逆的碳质物质石墨化,利用拉曼光谱量化石墨化的程度,进而限制峰期变质的温度。近年来的研究量化了温度计算模型;同时发现除温度外,石墨化碳质物质拉曼光谱的影响因素还包括:石墨结构与成分的非均匀性、抛光制靶时引起的结构损伤、测试激光的波长和能量、赤铁矿含量等。因此,石墨化碳质物质拉曼光谱温度计的应用需要注意如下事项:野外需采集新鲜样品,排除风化产物赤铁矿的影响;使用标准的样品制备与测试流程,避免抛光和激光烧蚀的影响;并通过多点测试(通常为25个以上)的方式,统计测试结果的平均值与误差,以提高温度计算结果的准度。该方法适用的温度范围为100~700 ℃,在变质—变形分析、沉积岩埋藏历史、断层泥与有机质成熟度等研究领域均有较为广泛的应用。

关键词: 碳质物质 ; 石墨化 ; 拉曼光谱 ; 变质温度计 ; 中—低级变质作用

Abstract

This contribution attempts to summarize the principles, sample preparation, analytical procedures, influencing factors, and geological applications of Raman Spectroscopy of Carbonaceous Material (RSCM) thermometry. Irreversible graphitization of carbonaceous material in sedimentary rocks occurs during the process of reaching peak metamorphic temperature and can be effectively quantified by Raman spectroscopy. However, in addition to temperature, other factors, such as structural and compositional heterogeneity of carbonaceous materials, structural damage caused by polishing, wavelength and energy of laser used for analyses, hematite content,etc., also have significant influence on the Raman signals of carbonaceous materials. Therefore, fresh samples should be collected for analyses to eliminate the influence of hematite. Further, standard experimental procedure should be practiced to avoid the effects of polishing and laser parameter setups. Additionally, multiple (usually more than 25) analyses per sample should be carried out for deriving statistical average and uncertainty values so as to minimize the influence of sample heterogeneity. RSCM thermometry is applicable to a temperature range between 100~700 ℃, and has been widely used in many fields of geological studies, including metamorphism and deformation of orogens, sediment burial history, fault gouge characteristics and evolution, and maturation grade of carbonaceous materials,etc.

Keywords: Carbonaceous material ; Graphitization ; Raman spectroscopy ; Geothermometer ; Metamorphism and deformation

PDF (6179KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

田野, 田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用. 地球科学进展[J], 2020, 35(3): 259-274 DOI:10.11867/j.issn.1001-8166.2020.029

Tian Ye, Tian Yuntao. Fundamentals and Applications of Raman Spectroscopy of Carbonaceous Material(RSCM)Thermometry. Advances in Earth Science[J], 2020, 35(3): 259-274 DOI:10.11867/j.issn.1001-8166.2020.029

1 引 言

自然界中的碳质物质广泛存在,有生物[1,2]、热液[3,4,5]、或地外等多种成因[6,7]。对于生物成因的碳质物质,在埋藏受热过程中,其成分和结构会发生两种连续的变化:碳化与石墨化[8,9,10,11,12,13]。在碳化阶段,非碳原子被逐渐排出体系,碳原子开始形成六边形的芳香环骨架,而在接下来的石墨化过程中这些芳香环骨架会发生聚合并在结构上重新排列,形成更加稳定的ABAB层状叠置的石墨结构[8,9,10,11,12,13]。大量学者通过X射线衍射(X-Ray Diffraction, XRD)、透射电子显微镜(Transmission Electron Microscope, TEM)和拉曼光谱(Raman Spectrum, RS)等方法,证实碳质物质石墨化的程度与母岩变质级别紧密相关[14,15,16,17,18]。基于这些认识,国内外诸多学者开发并应用了碳质拉曼光谱温度计[19,20,21]

国内外关于石墨化碳质物质温度计的研究由来已久,Rietmeijer等[22]发现变质温度在400 ℃以下时,石墨d002晶格面间隔与其峰期变质温度有一定的相关性;Wada等[23]应用X射线衍射分析发现碳质物质石墨化程度与岩石变质温度在300~600 ℃范围内线性相关;Beyssac等[24]结合矿物变质温度计、镜质体反射率(RO)等方法,建立了石墨化碳质物质拉曼温度计模型,并用于定量研究变质岩的峰期变质温度;此后的研究结合低温热年代学等方法,将该温度计拓展到更低温的范围[21],并应用于研究相关的变质、变形[19,25]。国内也开展了许多相关研究[26,27,28,29,30,31,32,33],胡凯等[26]结合镜质体反射率和氧同位素古温度计等测温方法,对碳质拉曼光谱各谱峰数据进行多元回归分析,给出了中低级变质样品(200~500 ℃)变质温度估算方法。后续有学者使用碳质拉曼光谱分析开展了岩石变质级别划分、有机物成熟度测定与油气演化等研究[27,28,29,30,31,34]

自石墨化碳质物质拉曼光谱温度计问世以来,诸多国内外学者从不同角度对该测温方法进行了详细的评述[9,25,26,35,36,37,38]。近年来的研究发现,石墨化碳质物质拉曼光谱信号还受到一些非温度因素的影响,这在前人综述中鲜有系统总结。因此,本文结合前人研究与作者的工作经历,试图系统地介绍该方法的原理、样品制备、测试流程、非温度影响因素、温度定量计算模型和相关地质应用。

2 石墨化碳质物质拉曼温度计

2.1  基本原理

不稳定的碳质物质随埋藏与变质过程会逐渐转变为稳定的石墨[10],石墨化程度仅与岩石经历的峰期变质温度有关,并具有不可逆性[13]。因此,通过测定碳质物质的石墨化程度便可量化其经历的峰期变质温度。

拉曼散射与物质的成分和结构紧密相关[39,40,41,42,43]。对于碳质物质,其石墨化程度不同,拉曼光谱特征差异显著[39,44]:碳质石墨化较高时,碳原子层排列有序,层间间距较小,没有其他原子团,表现为显著的G峰(1 580 cm-1),其振动模式为E2g2[9,24,39];而在晶格结构有限的情况下,石墨碳层边界缺陷会导致形成D1缺陷峰(1 350 cm-1),振动模式为A1g[9,24,39];石墨化程度较低时,由于晶格缺陷较多,光谱会表现出较多的缺陷锋,如频移在1 620 cm-1(D2)、1 510 cm-1(D3)和1 245 cm-1(D4)的谱峰[9,25,39,44,45,46,47](图1a)。

图1

图1   碳质物质拉曼光谱特征、光谱拟合及经历了不同变质温度样品光谱信号

(a)光谱拟合示意图(据参考文献[19]修改),其中实线为原始光谱图像,虚线为分峰拟合结果:G(graphite)峰表示石墨峰,D(defect)峰表示缺陷峰;(b)不同峰期变质温度样品的拉曼光谱图像与对应温度计算结果;用于分析的石墨化碳质物质分别来自龙门山映秀断裂断层泥、松潘—甘孜地体东部的复理石、龙门山腹地志留纪云母片岩和胶北矽线石榴片麻岩样品;随着样品峰期变质温度增高,G峰信号增强、D峰信号减弱

Fig.1   Images of typical raman spectra, spectral fitting results and the spectra of samples that have experienced different peak metamorphic temperatures

(a) Images of typical raman spectra and spectral fitting results (modified after reference [19]), where the solid line is the original spectral signal, and the dash lines are the peak fitting results: The G-band represents the graphite peak and the D-bands represent defect peaks; (b) Raman spectra of samples with different peak metamorphic temperatures and corresponding temperature calculation results; The samples are fault gouge of the Yingxiu fault in the Longmenshan, Triassic flysch in the eastern Songpan-Ganzi terrane, Silurian mica schist in the hinterland of the Longmenshan, and metamorphic rocks in the Khondalite belt of North China; As shown, the G-band signal increases and the D-band signal decreases with the increase of sample peak temperatures


2.2  样品制备及仪器参数

拉曼光谱测试作为一种便捷、无损的分析方法,对测试样品的要求相对简单:单矿物样品、粉末、标准岩石学薄片等均可直接进行测试。对于石墨化碳质物质的拉曼光谱分析,理论上可使用上述任意状态的样品;然而考虑到岩石中的碳质物质体积相对较小,需要在显微镜下观察定位,通常使用0.03 mm厚的标准岩石薄片或略厚的探针片。另外,对于有面理和线理发育的样品,切片方向应垂直面理、平行线理。

石墨在单偏光与反射光下具有不同的光学特点(图2)。在单偏光下,石墨为不透明矿物;在反射光下,石墨具有明亮的灰白色。结合上述两种观测方法,可以快速找到石墨颗粒。

图2

图2   龙门山云母片岩样品

(a)透射光显微照片; (b)反射光显微照片

Fig.2   Micrographs of a mica schist sample from the Longmenshan

(a) Transmitted; (b) Reflected lights


常用的拉曼光谱测试设备主要是HORIBA-JY LabRAM、Renishaw inViaTM和Thermo Scientific™ DXR™2xi显微拉曼成像光谱仪,诸多研究使用的激光波长为514.5 nm。测试中可通过如下两种方式提高信噪比:采用长曝光时间(20~300 s[24,30,31]),或信号多次叠加。本文展示的数据采集自Thermo Scientific™ DXR™2xi显微拉曼成像光谱仪,测试所用激光波长为514.5 nm,光斑直径约为1 μm,功率为1 mW,照射频率为10 Hz,时间为20 s,光谱接收范围为1 000~1 800 cm-1

2.3  数据处理与温度计算

2.3.1 光谱数据处理

(1)荧光背景扣除。虽然诸多显微拉曼成像光谱仪具有消除荧光信号干扰的功能,但测试数据中仍会残留一定的荧光信号。中高温变质样品的荧光背景一般表现为近线性(图3a),而低温变质样品的荧光背景往往为非线性(图3b)。因此,需要使用光谱分析软件,建立荧光背景基线,并进行扣除。基线校正可用Peakfit4.12 (https://systatsoftware.com)或Fityk(https://fityk.nieto.pl)等软件。由于1 000~1 100 cm-1和1 700~1 800 cm-1范围内不存在石墨特征拉曼谱峰,所观测的信号应为荧光背景,本文使用三次多项式函数拟合这些信号,进而构建荧光基线[35]

图3

图3   不同峰期变质温度样品的荧光背景

(a)中高温变质碳质物质拉曼光谱(实线)具有近线性荧光背景(虚线);(b)低温变质样品具有非线性荧光背景(虚线)

Fig.3   Fluorescent background of samples with different peak metamorphic temperatures

(a) Samples with a moderate peak metamorphic temperature often show linear fluorescent background (dashed line); (b) Samples with a peak metamorphic temperature often yield non-linear fluorescent background (dashed line)


(2)分峰拟合。由于石墨峰(G峰)与缺陷峰(D峰)都具有一定的分布范围,当信号重叠时很难直接获得单个谱峰的信号强度与分布面积,因此需对光谱进行分峰拟合。使用不同的拟合函数会在一定程度上影响谱峰拟合的强度与面积,并最终影响温度计算结果,因此需选用合适的光谱拟合函数。光谱拟合函数种类多样,如线性函数(Linear)、多项式函数(Polyomial)、高斯函数(Gauss)、福格特函数(Voigt)和洛伦兹函数(Lorentzian)等。对于石墨拉曼光谱,常用的拟合函数为福格特函数和洛伦兹函数[8,19,24,35]。Lahfid等[8]认为在变质温度较低时应使用洛伦兹函数对光谱进行分析,而Beyssca等[24]的研究主要使用福格特函数。为了对比拟合函数不同对结果的影响,Lünsdorf等[35]分别使用洛伦兹和福格特函数对19个不同变质温度的样品进行了光谱拟合,结果显示仅在低温(约小于350 ℃)变质样品的光谱拟合结果上产生较大差别,中高温变质样品未见明显区别。通过温度计算结果与其他温度计测温结果对比显示,在低温变质区间,洛伦兹函数的光谱拟合结果明显比福格特函数更加准确[35]。因此不论在何种温度区间,均可使用洛伦兹函数对光谱进行拟合分析。另外根据作者对龙门山云母片岩、胶北矽线石榴片麻岩的测试结果,在中高温变质区间,使用两种光谱拟合函数最终获得的变质温度差别小于10 ℃,因此统一使用洛伦兹函数进行光谱分析较为合理(图1a)。

作者使用Peakfit4.12和Fityk软件[48,49]进行分峰拟合。Fityk软件有着较为友好的操作界面,分峰拟合过程快捷,同时也可以实现多条光谱的形态对比;对于峰期变质温度在350 ℃以上的样品,由于缺陷峰信号较弱,使用两种软件拟合的结果差别不大;当峰期变质温度较低时(小于约350 ℃),由于缺陷峰较多且荧光背景较强,使用Peakfit4.12软件进行分峰拟合的效果更好。

经历不同峰期变质温度的碳质物质在拉曼光谱形态上有显著差异,如图1b所示,变质温度较低的断层泥样品(来自龙门山映秀断裂带)含有较多信号较强的缺陷峰,G峰与D2峰难以区分;松潘—甘孜复理石样品缺陷峰主要为D1与D2,且D2峰与G峰信号强度相似;龙门山志留纪云母片岩样品石墨G峰较为明显,含有D1峰和微弱的D2峰;胶北矽线石榴片麻岩中的石墨一般仅有G峰,缺陷峰极其微弱或缺失。值得一提的是根据石墨拉曼光谱所计算得到的胶北矽线石榴片麻岩峰期变质温度为650~700 ℃(具体方法见下文),低于前人根据矿物组合的估算(最低860 ℃)[50,51,52,53]

2.3.2 变质温度计算

石墨化碳质物质拉曼温度计模型主要有以下几种。胡凯等[37]使用Dilor-28型拉曼光谱显微探针,采用1 mW、488 nm的激光对样品进行分析。根据已通过氧同位素、变质矿物组合和镜质体反射率共同限定变质温度的岩石样品,使用多元回归分析方法,拟合了变质温度与碳质拉曼光谱参数,得到了在200~500 ℃范围内的温度计算公式[37]。Beyssac等[24]使用DILOR XY拉曼光谱仪(激光参数为:波长514.5 nm、功率1~5 mW、光斑直径约2 µm),对岩石峰期变质温度与石墨化碳质物质拉曼光谱特征进行了更加系统地分析,从阿尔卑斯、日本、希腊等地选取了不同变质级别的岩石样品,根据变质矿物对独立限定样品的温压条件,通过拟合光谱测试的R2参数[公式(1),其中D1、D2和G为石墨对应的拉曼谱峰]与变质温压的对应关系,发现R2与岩石变质压力无关,与温度(T)有良好的线性关系[公式(2)],并确定该方法的适用温度区间为330~650 ℃,计算误差为±50 ℃。

R2=(D1D1+D2+G)
T=-445R2+641, R2=0.96。

为将此温度计方法推广至接触变质温度研究领域并提高结果计算精度,Aoya等[19]使用Thermo Nicolet™拉曼光谱仪(激光参数为:波长532 nm、功率3 mW、光斑直径约1 µm),对日本两处经过热模拟和变质矿物对共同限定变质温度的接触变质岩样品进行了拉曼光谱分析,拟合得出了可用于接触变质的温度计算公式(3),温度计算误差为±15 ℃;另外,结合Beyssac等[24]的数据,使用二次函数拟合得出了精度更高温度计算公式(4),温度计算误差为±30 ℃。

T=221R22-637.1R2+672.3,R2=0.99,
T=91.4R22-556.3R2+676.3,R2=0.98。

随着温度计研究的不断深入,温度计算范围也得到了扩展。Rahl等[21]使用HORIBA-JY LabRAM拉曼光谱仪(激光参数为:波长532 nm、功率1 mW、光斑直径约1.5 µm),发现参数R1[公式(5)]与岩石峰期变质温度也有一定相关性,便结合大量裂变径迹与(U-Th)/He限定的温度历史,通过R1与R2双变量的多项式拟合,得出了温度计算公式(6),将之前330~650 ℃的温度计算范围拓宽至100~700 ℃,温度计算误差为±40 ℃。

R1=D1D2
T=737.3+320.9R1-1067R2-80.638R12,R2=0.94。

除上述研究外,也有学者利用不同的光谱参数拟合浅变质样品的峰期变质温度,Kouketsu等[38]使用Thermo Nicolet™拉曼光谱仪(激光参数为:波长532 nm、功率1~3 mW、光斑直径约1 µm),通过对经伊利石K-Ar同位素、伊利石结晶度和镜质体反射率共同限定变质温度的样品进行拉曼光谱分析,发现浅变质样品D1和D2峰的半高宽[公式(7)和(8)中的FWHM.D1与FWHM.D2参数]与峰期变质温度有很好的相关性,从而通过数据拟合,得到温度计算公式(7)和(8),适用温度为150~400 ℃,误差分别为±30和±50 ℃。由于实验室条件差异及下文将分析的非温度的影响因素,公式(7)和(8)仅使用一个独立参数可能会使结果波动性较大,同时测温结果的相对误差也较大,因此在使用这两个公式前最好有其他温度计对其进行标定[38]

T=-2.15FWHM.D1+478, R2=0.97,
T=-6.78FWHM.D2+535, R2=0.96。

图4使用Rahl等[21]报道的数据和作者的数据对公式(2)、(4)、(6)和(7)的温度计算结果进行了对比,以进一步说明各种温度计算模型适用的温度范围,以及R1、R2和D1半高宽(FWHM.D1)等参数对变质温度的敏感性(图4)。结果显示,公式(4)的计算结果普遍高于公式(2),但整体差距较小;除个别数据点外,公式(6)的计算结果也普遍高于公式(2) (图4a)。使用R1和D1半高宽的公式(6)与公式(7)可以计算低温样品的变质温度,对比发现在数据来源测试条件下公式(7)拟合温度普遍低于公式(6)(图4b)。

图4

图4   温度计算模型对比图

(a)高温样品的经验公式计算结果对比图,结果显示,除个别异常点,公式(4)与(6)的计算温度明显高于公式(2);(b)适用于相对低温样品的经验公式(6)(横坐标)与公式(7)(纵坐标)低温(<400 ℃)计算结果对比,二者计算相对误差均较大,整体上公式(7)计算结果小于公式(6);拉曼数据源自参考文献[21]和图1b中的样品

Fig.4   Comparison of different Raman spectroscopy of carbonaceous material thermometry models

(a) Comparison of the temperatures calculated by equations (2) (x-axis) and (4), (6) (y-axis) that are suitable for a relatively higher temperature range; The calculation results show that except for several outliners, the calculated temperatures by formula (4) and (6) are higher than that by formula (2); (b) Comparison of equation 6 (x-axis) and 7 (y-axis) at low temperature (<400 ℃). Both errors are large, and the calculated results of equation 7 are relatively smaller than those of equation 6. Raman data are derived from reference[21] and Fig.1b


因此,选择温度计算模型时需要综合考虑不同公式的适用温度及结果误差:使用范围为100~700 ℃。当样品峰期变质温度在350~650 ℃时应选择公式(2)或公式(4),当峰期变质温度低于350 ℃时应选择公式(6)或公式(7)。不同方程的结果差异本质上反映了不同拉曼光谱参数(R1、R2、D1与D2半高宽)对变质温度的敏感性。另外,对于低温样品,不同方法[公式(6)~(8)]计算的结果偏差较大,需要开展更多方法性研究。

3 非温度影响因素

作为一种通过物质结构来反映变质岩峰期变质温度的测温方法,石墨化碳质物质拉曼光谱温度计在使用时要注意对非温度影响因素的评估。它们主要包括石墨的各向异性与非均质性、激光波长及热效应、样品抛光和风化程度(赤铁矿含量)等。这些因素造成的影响可以通过样品前处理、多点测试和优化操作流程等方法进行减弱或消除。因此,对这些影响因素的评估,是获得准确测温结果的前提。下文分别介绍这些非温度影响因素并给出了建议解决方法。

3.1  石墨的各向异性

石墨为六方晶系片状矿物,具有显著的各向异性,与激光偏振一同造成了在不同晶轴方向上石墨拉曼光谱特征的细微差异,这一直是该温度计研究的难点[19,54,55,56]。Tan等[57]曾用结晶完整的石墨对此问题进行了深入研究,并结合不同波长的激光进行对比(图5),结果显示:波长为514.5 nm的激光在照射石墨晶体平面时未出现明显的缺陷峰(D1峰与D2峰),而当激光偏振方向平行于石墨层时,出现缺陷峰。与此同时,随激光波长加大,缺陷峰强度增加。

图5

图5   石墨拉曼光谱各向异性分析图(据参考文献[57]修改)

由上至下为在石墨不同晶轴方向上的测试结果;由左至右为使用不同波长激光的分析结果,右下角双向箭头为激光偏振方向

Fig.5   Raman spectra of graphite anisotropy (modified after reference [57])

From top to bottom are the Raman spectra of graphite in different crystal axis directions; From left to right are the analysis results using lasers with different wavelengths. The double-headed arrows in the lower right corner of the panels mark the laser polarization direction


由于石墨一般平行面理生长,为减弱石墨各向异性的影响,应选择垂直于岩石面理,平行线理的方向制作薄片[24]。同时,Aoya等[19]研究发现,当测点大于25个时,测试结果的平均值趋于稳定。因此,多点测试(大于25个)也是解决石墨各向异性影响的有效途径。

3.2  碳质物质的非均质性

透射电镜分析显示碳质物质的非均质性普遍存在[58,59,60,61]。如图6所示为非均质碳质物质在透射电镜下呈现不同有序度的洋葱状结构和显微气孔结构[59]。此外,也有学者使用扫描透视X射线显微镜(Scanning Transmission X-ray Microscopy, STXM)对碳质物质的结构进行分析,得到了类似结果[62,63]。引起石墨非均质性的原因可能是局部化学成分的不均一或碳原子在不同晶轴方向上的杂乱排列,即结晶程度较低[64]。碳质物质的非均质性是影响温度计算结果的重要因素之一,多点测试(大于25个)是减小该影响的有效途径[19]

图6

图6   碳质物质高分辨率透射电镜显微形貌照片(据参考文献[58]修改)

(a)002晶面:可见到洋葱式结构,外圈比内圈有序度要高;(b)002晶面:有序度小于(a),发育显微气孔结构,不同区域有序度不同;(a)和(b)来自同一个样品的不同位置

Fig.6   HRTEM pictures from carbonaceous material (modified after reference [58])

(a) 002 lattice fringes image showing onion ring microtextures, the core is poorly organized in comparison with the outer part; (b) 002 lattice fringes image of microporous poorly organized carbonaceous material. The two pictures are taken from different locations of the same sample


3.3  激光波长的影响

前人研究发现,使用不同波长的激光(光子能量不同),相同样品得到的光谱结果有显著差异,主要体现为光谱形态与谱峰位置[40,65,66]。如图7所示,随着激光波长逐渐增大,缺陷峰(D1峰)信号增强,石墨峰(G峰)信号相对减弱[9,66]。与此同时,缺陷峰频移增大,而石墨峰频移基本不变[46]

图7

图7   激光波长对碳质拉曼光谱的影响(据参考文献[67]修改)

随波长增加,石墨峰(G峰)频移基本不变,缺陷峰(D1峰)频移增大,同时石墨峰信号相对于缺陷峰减弱

Fig.7   Effect of laser wavelength on Raman spectroscopy of carbonaceous material (modified after reference [67])

With an increasing laser wavelength, the Raman shift of the G-band is relatively stable; The Raman shift of the D1-band increases; The

G-band signal is weakened compare to the D1-band


由于拉曼谱峰形态与测试激光波长密切相关(图7),这可能会对温度计算结果有较大影响。因此,在利用前述温度计定量模型[公式(1)~(8)]时,需要使用与模型匹配的激光波长(通常为514.5 nm)。

3.4  激光强度的影响

激光照射会使石墨化碳质物质受热发生热氧化,进而影响拉曼测试结果[68]。这种现象的主要表现形式是碳质物质表面被烧蚀,且谱峰强度与位置发生改变[69](图8)。据前人研究,激光能量过强会使G峰频移减小,D峰强度降低[70,71]。因此在测试时需控制测试激光能量,对于直径1 μm的测试光斑,激光输出能量不宜超过1 mW[35]

图8

图8   测试前(a)与经过不同能量激光测试后(b~e)的碳质物质显微照片,及对应的拉曼光谱结果(f)(据参考文献[69]修改)

Fig.8   Images of carbonaceous material before(a)and after Raman spectroscopy analysis using different laser energy(b~e),and the corresponding Raman spectra(f)(modified after reference69])


除降低激光能量外,也可选择透明矿物下的石墨进行测试(图1),上覆矿物能够有效吸收激光照射产生的热量,可显著降低热效应的影响[57]

3.5  抛光的影响

石墨化碳质物质硬度较低,在薄片制作时,抛光的过程可能会产生更多的损伤,而影响拉曼测试结果[9]。Pasteris[54]指出抛光后样品D峰的信号有一定增强(图9)。Beyssac等[58]通过对比研究了被抛光的石墨与透明矿物下方未受抛光影响的石墨的拉曼光谱,发现前者出现显著的D峰,这会极大影响温度的计算。此外,Wang等[55]和Mostefaoui等[72]也就石墨抛光对拉曼测试结果的影响进行了一系列研究,确认了抛光造成的结构损伤对测试结果有影响。

图9

图9   抛光对拉曼测试结果的影响(据参考文献[9,72]修改)

(a)显微镜下石墨照片,部分石墨直被抛光暴露(黑色点标注的透射光下的不透明、反射光下灰白色强反射的区域),部分处于透明矿物之下(白点所标注的反射光下的较虚的灰白色区域);(b)抛光暴露的与透明矿物下的石墨拉曼光谱测试结果

Fig.9   Raman spectra of polished graphite and that of grains beneath quartz (modified after references [9,72])

(a) Microscopic photos of graphite exposed by polishing (opaque under transmitted light and gray-white under reflected light, marked by black spots) and those beneath transparent miners (marked by white spots); (b) Raman spectra of those two types of graphite


为避免上述抛光造成的影响,测试时应尽量选择透明矿物下或粒状矿物旁的石墨,这两种环境的石墨因受上覆或附近较坚硬矿物的保护,晶体结构基本不受抛光影响,同时石英等透明矿物的谱峰位置与石墨不同,对石墨光谱信号没有影响,因此可提供较可靠的测试谱图[56]

3.6  赤铁矿的影响(样品风化的影响)

样品风化氧化会产生赤铁矿,其拉曼谱峰(1 320 cm-1)与石墨D1峰(1 350 cm-1)位置接近(图10a),会直接影响碳质拉曼光谱的测量[73]。在氧化样品中,由于赤铁矿谱峰影响会产生虚假的强D1缺陷峰,进而使温度计算参数R1与R1值[公式(1)和(3)]增大(图10b)。Brolly等[73]使用HF酸对氧化样品进行处理,结果显示,酸处理后样品的R1与R2值与未氧化的样品基本相同(图10b),有效降低了赤铁矿的影响。因此,为保证测试结果的相对准确,采样时应注意选择新鲜样品,或对采集的氧化样品进行HF酸处理[74]

图10

图10   赤铁矿对拉曼光谱影响(据参考文献[73]修改)

(a)为石墨光谱形态与同频移段内赤铁矿光谱形态,其中赤铁矿谱峰位置为1 320 cm-1,与石墨D1缺陷峰位置(1 350 cm-1)接近,插图为氧化(灰色)与未氧化(黑色)样品的测试谱图,显示氧化样品受赤铁矿谱峰影响而产生虚假的强D1缺陷峰;(b)为是否经HF酸处理的碳质物质R1与R2值的变化:未经过HF处理的氧化样品(灰色)R1与R2值明显大于未氧化样品(黑色);处理后两类样品基本相同

Fig.10   Effect of hematite on Raman Spectra of graphite (modified after reference [73])

(a) Raman spectra of hematite (grey) and graphite (black). The Raman shift of hematite is located at 1 320 cm-1, close to D1 band (1 350 cm-1) of graphite. The insetted panel shows a comparison of Raman spectra of oxidized (grey) and non-oxidised (black) samples, and the former shows a fake and strong D1 band due to influence of hematite. (b)R1 andR2 plots for untreated and HF-treated samples. Blue points indicate non-oxidised samples. Red points indicate oxidised samples. After treatment, the two types of samples yield similarR1 andR2 values


4 地质应用

4.1  造山带变质—变形分析

造山带中含有大量增生的沉积物,由于变质级别相对较低,往往缺乏特征变质矿物,给增生楔变质—变形研究带来了不便。然而,这类岩石中富含有机质,可利用石墨化碳质物质进行岩石峰期变质温度的测定。前人利用该方法研究了多处造山带的地表热结构与变质—构造演化[74,75,76,77]。下面介绍一个关于喜马拉雅构造变形的研究实例(图11)。

图11

图11   尼泊尔西部地质图、拉曼测温结果及NE-SWA-A'构造—变质温度剖面(据参考文献[74]修改)

图中给出构造地层的接触关系及一些样品的拉曼测温结果,(a)图为地质图所属地理位置;(b)NE-SW向剖面AA';LH: 低喜马拉雅;MCT:主中央逆冲断层;MBT:主边界逆冲断层;MFT:主前缘逆冲断层

Fig.11   Geological map of western Nepal, on which Raman Spectroscopy of Carbonaceous Material (RSCM) thermometer results are compiled, and there also have a NE-SW cross-section A-A' with temperature and main thrusts (modified after reference[74])

There are major tectonostratigraphic zones and tectonic contacts and some RSCM thermometer results in the map. (a) Location of the studied area at the scale of Nepal. (b) A simplified NE-SW crosssection AAV with temperature and main thrusts. Abbreviation: LH:Lesser Himalaya,MCT:Main Central Thrust,MBT:Main Boundary Thrust,MFT:Main Frontal Thrust


主中央逆冲断层(Mmain Central Thrust, MCT)是南侧低喜马拉雅与北侧高喜马拉雅结晶杂岩体的分界,据前人研究发现此地有变质温度梯度倒转的现象,但由于缺少特征矿物组合进行温度测定,仅能用矿物等变线或伊利石结晶度进行简单的变质级别划分[78,79]。为了约束此地区的构造及热演化,Beyssac等[74]使用碳质拉曼温度计对尼泊尔低喜马拉雅带内83个岩石样品进行测试分析(图11a)。该研究在低喜马拉雅(变质温度普遍在375~475 ℃)识别出零星分布的、与高喜马拉雅变质等级(变质温度大于475 ℃)类似的结晶岩系;这说明高喜马拉雅曾通过主中央断裂推覆到低喜马拉雅之上,并经历后期挤压、抬升与剥蚀,形成现今零星分布的飞来峰构造(图11b)。

除了上述地区的研究外,碳质物质拉曼温度计还被广泛应用于其他造山带的研究:如阿尔卑斯(Alps)造山带的变质温度、断层位置、俯冲过程中碳循环、地壳缩短模式[8,75,77,80,81];希腊克里特(Crete)地区拆离断层所引起变质温度突变[21];爱琴海两侧亚伯兰穹隆构造(Alboran Domain)[82];意大利阿普亚内山(Alpi Apuane)[83]、中国台湾和日本[19,20,84,85]的构造变形与变质作用。

4.2  断层泥特征分析

碳质物质拉曼光谱分析也被应用于地震断层泥的研究。地震具有发育时间短,产热集中的特点,因此断层泥经历的变质过程与传统区域变质作用有较大区别[86]。为分析断层滑动过程中摩擦生热对断层泥中碳质物质的影响,诸多学者开展了人工剪切摩擦实验[87,88]和天然断层泥碳质物质的拉曼光谱分析[86,88,89,90]

Kuo等[88]利用剪切摩擦实验研究了断层滑动速率与断层泥含水量对摩擦生热的影响。实验在8.5 MPa的压力下,变量包括等效剪切滑动速率(3与0.0003 m/s)和断层泥含水量(天然样品与添加10%蒸馏水的样品)。结果显示:剪切摩擦后缺陷峰D1强度相对于石墨峰减小、但峰宽相对变大(图12a),D1峰频移变化不显著、但G峰频移变大(图12b);加水会使D1强度相对于石墨峰减小、而峰宽变化不显著(图12a),D1和G峰频移均变的更加集中(图12b);慢速剪切使得D1/G峰强度更加集中、D1/G峰宽比略有增加(图12a),D1和G峰频移均略有增加(图12b)。

图12

图12   剪切摩擦实验后样品拉曼光谱特征,及其与初始材料的对比(据参考文献[88]修改)

(a) 初始样品与剪切摩擦实验后样品拉曼光谱D1/G峰宽值与D1/G强度值的变化;(b) 经初始样品标准化后的剪切样品D1/G半高宽值与D1与G峰拉曼频移位置

Fig.12   Raman spectra analyses of gouges sheared in rock friction experiments, and comparison with the initial material (modified after reference [88])

(a) Defect band to graphite band (D1/G) width versus intensity ratios of samples before and after friction experiments; (b) Plots of D1 and G peak widths of sheared gouges verseus the D1/G width ratio normalized by average starting material


此外,Kuo等[88]还对映秀断裂断层泥岩芯样品(汶川地震科学钻探1号孔)进行了拉曼光谱分析(图13)。结果显示,与角砾岩相比,断层泥D1/G强度比值更低,为0.7~0.9(图13b)。同时,断层泥的G峰频移位置明显大于角砾岩,约为1 590 cm-1(图13c)。结合剪切摩擦实验(图12),Kuo等[88]认为在断层泥的碳质物质在断层滑动后主要有以下特点:D1/G峰强度比值减小;缺陷峰谱峰宽度略有增大;G峰的频移位置逐渐增大。对比剪切摩擦实验结果发现,仅在正常湿度或高滑移速率时,碳质物质才有与天然断层泥样品类似的D1/G强度值(0.7~0.9)与G峰位置(1 590 cm-1)(图12,13)。由此可见,断层泥拉曼光谱分析或可为量化断裂地震过程中的流体活动、滑移速率提供一定的约束。

图13

图13   汶川地震科学钻井-1岩芯照片及不同位置拉曼分析结果(据参考文献[88]修改)

(a)龙门山断裂主要岩芯照片;(b)断层泥与角砾岩D1/G峰宽度比值与强度比值对比图;(c) 断层泥与角砾岩G、D1峰宽比及G峰与D1峰拉曼频移位置。插图显示断层泥G峰频移相对角砾岩增大;PSZ: 主滑动区域

Fig.13   Wenchuan Earthquake Fault Scientific Drilling WFSD-1 borehole core with sample depth locations and results of Raman analyses (modified after reference [88])

(a) Core images of the WFSD-1 borehole; (b) Defect to graphite band (D1/G) peak width ratio versus D1/G intensity ratio; (c) Ratio of G and D1 peak width of gouge to average breccia peak width versus G band peak position. Inset shows systematic shift toward higher frequencies of G band observed in black gouge with respect to fault breccia; PSZ denotes the Principal Slip Zone


也有学者尝试将碳质物质拉曼温度计应用于限定断层滑动的峰值摩擦温度[86,89]。然而,在低温区域,碳质物质拉曼温度计的精度较低(图4c),制约了相关研究;另外断层泥中碳质物质经历的变质过程与区域变质或接触变质有显著差别,且断层压力、滑动速率和含水量等因素均会影响断层泥碳质物质拉曼光谱信号,因此,相关的研究需要综合考虑多种影响因素。

4.3  其他应用

在油气地质学领域,镜质体反射率是反映有机质热演化成熟度比较通用的指标,是进行有机质生油阶段(温度小于约250 ℃)划分的标尺[91,92]。而在更高的有机质成熟阶段,镜质体反射率指标敏感度降低[92,93],同时有些样品可能不含镜质体[28],为了完善有机质成熟度的判断方法,诸多学者尝试利用有机质拉曼光谱分析进行成熟度评价:Kelemen等[93]发现随成熟度增加,拉曼谱峰中D峰与G峰面积比值减小;刘德汉等[94]利用不同热演化程度的样品,得出适用于高成熟度样品的成熟度计算经验公式;Wilkins等[95,96]也根据不同热演化程度煤的拉曼光谱特征建立了有机质成熟度的计算方法;王民等[97]在Wilkins等[95,96]的工作基础上建立了一种镜质组随机反射率(Rr)在0.4%~2.5%范围内的有机质热成熟度评价的拉曼模型;张聪等[98]结合样品扫描电镜分析结果,验证了拉曼光谱技术是测定高成熟度有机质的一种行之有效的手段。这些研究表明了有机质激光拉曼再判断有机质成熟度方面的潜力,尤其是镜质体缺失或镜质体反射率受到抑制或识别困难的沉积岩中具有广阔的应用前景[97]。在其他地球科学领域,也有石墨化碳质物质拉曼光谱温度计的应用方向:如探究岩浆侵入所伴随的热效应[19,49],球粒陨石的热演化[7],示踪沉积物源区与碳质物质经历的沉积循环[99,100,101,102],有机质矿化过程中的变质温度[2],造山带剥蚀过程[84,85]等。

5 结论与展望

作为一种定量测试中低级变质岩峰期变质温度的方法,石墨化碳质物质拉曼光谱温度计具有样品制备简单、测试方便快捷、测试周期短等优点,相关实验与应用需要注意样品制备、碳质物质的非均质性与各向异性、样品风化程度等非温度因素的影响。抛砖引玉,作者认为该温度计方法理论与应用的进一步发展,需要在如下方面做更多工作:如前文所述,不同经验模型在中高温范围内的计算结果比较一致,然而在低温范围内,计算结果差异很大[38],因此探究低温编制样品碳质物质拉曼光谱信号的主控因素、开发针对低级变质样品的温度计算经验公式是有必要的。其次,如Lünsdorf等[25]所指出的,现有的测试条件以及数据分析过程会因实验室和操作人员的不同有较大差别,这使得温度计算结果在一定程度上没有可比性,因此,此温度计未来发展中需要建立一个标准的样品制备和测试方法,以建立更加标准对比体系。最后,在应用方面,此温度计仍有较大空间值得开发,如可与热年代学方法结合,用于限定岩石的温度历史[21];与构造地质观测与矿物压力计等结合,限定岩石的变形与变质历史等[103]

参考文献

Bernard S,Papineau D.

Graphitic carbons and biosignatures

[J].Elements,2014,10(6):435-440.

[本文引用: 1]

Alleon J,Bernard S,Le Guillou C,et al.

Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy

[J].Nature Communications,2016,7(1):1-11.

[本文引用: 2]

Luque F J,Pasteris J D,Wopenka B,et al.

Natural fluid-deposited graphite: Mineralogical characteristics and mechanisms of formation

[J].American Journal of Science,1998,298:471-498.

[本文引用: 1]

Luque F J,Ortega L,Barrenechea J F,et al.

Deposition of highly crystalline graphite from moderate-temperature fluids

[J].Geology,2009,37(3):275-278.

[本文引用: 1]

Rumble D.

Hydrothermal graphitic carbon

[J].Elements,2014,10(6):427-433.

[本文引用: 1]

Croat T K,Bernatowicz T J,Daulton T L.

Presolar graphitic carbon spherules: Rocks from stars

[J].Elements,2014,10(6):441-446.

[本文引用: 1]

Visser R,John T,Menneken M,et al.

Temperature constraints by raman spectroscopy of organic matter in volatile-rich clasts and carbonaceous chondrites

[J].Geochimica et Cosmochimica Acta,2018,241:38-55.

[本文引用: 2]

Lahfid A,Beyssac O,Deville E,et al.

Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland)

[J].Terra Nova,2010,22(5):354-360.

[本文引用: 5]

Beyssac O,Lazzeri M.

Application of raman spectroscopy to the study of graphitic carbons in the Earth science

[J].EMU Notes in Mineralogy,2012,12(12):415-454.

[本文引用: 9]

Beyssac O,Rumble D.

Graphitic carbon: A ubiquitous, diverse, and useful geomaterial

[J].Elements,2014,10(6):415-420.

[本文引用: 3]

Delarue F,Rouzaud J N,Derenne S,et al.

The raman-derived carbonization continuum: A tool to select the best preserved molecular structures in Archean Kerogens

[J].Astrobiology,2016,16(6):407-417.

[本文引用: 2]

Deldicque D,Rouzaud J N,Velde B.

A Raman-HRTEM study of the carbonization of wood: A new raman-based paleothermometer dedicated to archaeometry

[J].Carbon,2016,102:319-329.

[本文引用: 2]

Beyssac O,Brunet F,Petitet J P,et al.

Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature

[J].European Journal of Mineralogy,2004,15(6):937-951.

[本文引用: 3]

Grew E S.

Carbonaceous material in some metamorphic rocks of New England and other areas

[J].The Journal of Geology1974,82(1):50-73.

[本文引用: 1]

Diessel C F K,Brothers R N,Black P M.

Petrology: Coalification and graphitization in high-pressure schists in New Caledonia

[J].Contributions to Mineralogy and Petrology,1978,68(1):63-78.

[本文引用: 1]

Itaya T.

Carbonaceousmaterialin pelitic schists of the: Sanbagawametamorphicbelt in central Shikoku,Japan

[J].Lithos,1981,14(3):215-224.

[本文引用: 1]

Bonijoly M,Oberlin M,Oberlin A.

A possible mechainsm for natural graphite formation

[J].International Journal of Coal Geology,1982,1(4):283-312.

[本文引用: 1]

Buseck P R,Bo-Jun H.

Conversion of carbonaceous material to graphite during metamorphism

[J].Geochimica et Cosmochimica Acta,1985,49(10):2 003-2 016.

[本文引用: 1]

Aoya M,Kouketsu Y,Endo S,et al.

Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks

[J].Journal of Metamorphic Geology,2010,28(9):895-914.

[本文引用: 11]

T-F Yui,Huang E,Xu J.

Raman spectrum of carbonaceous material: A possible metamorphic grade indicator for low-grade metamorphic rocks

[J].Journal of Metamorphic Geology,1996,14(2):115-124.

[本文引用: 2]

Rahl J,Anderson K,Brandon M,et al.

Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece

[J].Earth and Planetary Science Letters,2005,240(2):339-354.

[本文引用: 8]

Rietmeijer F J M,Mackinnon I D R.

Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials

[J].Nature,1985,315(6 022):733-736.

[本文引用: 1]

Wada H,Tomita T,Matsuura K,et al.

Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan

[J].Contributions to Mineralogy and Petrology,1994,118(3):217-228.

[本文引用: 1]

Beyssac O,Goffé B,Chopin C,et al.

Raman spectra of carbonaceous material in metasediments: A new geothermometer

[J].Journal of Metamorphic Geology,2002,20(9):859-871.

[本文引用: 9]

Lünsdorf N K,Dunkl I,Schmidt B C,et al.

Towards a higher comparability of geothermometric data obtained by raman spectroscopy of carbonaceous material. Part 2: A revised geothermometer

[J].Geostandards and Geoanalytical Research,2017,41(4):593-612.

[本文引用: 4]

Hu Kai,Liu Yingjun.

Laser raman spectroscopy carbon geothermal thermometer and its geological application

[J].Chinese Journal of Geology,1993,28(3):235-245.

[本文引用: 3]

胡凯,刘英俊.

激光喇曼光谱碳质地温计及其地质应用

[J].地质科学,1993,28(3):235-245.

[本文引用: 3]

Duan Jingchun,Zhuang Xinguo,He Mouchun.

Laser raman spectral characteristics of coals with different metamorphic degrees

[J].Geological Science and Technology Information,2002,21(2):65-68.

[本文引用: 2]

段菁春,庄新国,何谋春.

不同变质程度煤的激光拉曼光谱特征

[J].地质科技情报,2002,21(2):65-68.

[本文引用: 2]

Wang Yang,Hu Kai.

Application of laser raman spectrum characteristic parameters to reflect the maturity of organic carbon

[J].Mineralogy and Petrology2002,22(3):57-60.

[本文引用: 3]

汪洋,胡凯.

应用激光喇曼光谱特征参数反映有机碳质的成熟度

[J].矿物岩石,2002,22(3):57-60.

[本文引用: 3]

He Mouchun,Xinbiao ,Yao Shuzhen,et al.

Raman spectral characteristics of residual organic matter in sedimentary rocks

[J].Geological Science and Technology Information,2005,24(3):67-79.

[本文引用: 2]

何谋春,吕新彪,姚书振,.

沉积岩中残留有机质的拉曼光谱特征

[J].地质科技情报,2005,24(3):67-79.

[本文引用: 2]

Hu Daqian,Wang Yanquan,Sha Xi,et al.

Very low grade metamorphic temperatures of the upper paleozoic strata in Northern Daxing'anling Area, NE China:Evidence from raman spectrum studies of carbonaceous materials

[J].Journal of Jilin University (Science Edition)2015,45(1):188-197.

[本文引用: 3]

胡大千,王岩泉,沙茜,.

大兴安岭北部上古生界极低级变质温度——来自碳质物拉曼光谱的证据

[J].吉林大学学报:自然科学版,2015,45(1):188-197.

[本文引用: 3]

Yao Jie,Hu Daqian,Sun Guosheng,et al.

Raman spectrum characteristics of organic materials of Middle Permian Zhesi Formation in Suolun area, Inner Mongolia and their geological implication

[J].Global Geology,2016,35(3):760-770.

[本文引用: 3]

姚杰,胡大千,孙国胜,.

内蒙古索伦地区中二叠统哲斯组有机质的拉曼光谱特征及地质意义

[J].世界地质,2016,35(3):760-770.

[本文引用: 3]

Jiang Gaozhen,Li Yike,Wang Anjian,et al.

Genetic features of Dawudian graphite deposit in Urad Middle Banner, Inner Mongolia

[J].Earth Science Fronitier,2017,24(5):306-316.

[本文引用: 1]

姜高珍,李以科,王安建,.

内蒙古乌拉特中旗大乌淀石墨矿成因特征分析

[J].地学前缘,2017,24(5):306-316.

[本文引用: 1]

San Yun,Zou Yanrong,Min Yushun,et al.

Characteristics and significance of maturity of Raman spectra of type I kerogen during maturation

[J].Geochimica,2018,47(5):586-592

[本文引用: 1]

单云,邹艳荣,闵育顺,.

Ⅰ型干酪根热成熟过程中拉曼光谱特征及其成熟度意义

[J].地球化学,2018,47(5):586-592.

[本文引用: 1]

He Mouchun,Xinbiao ,Liu Yanrong.

Elementary investigation on the application of laser raman microprobe in petroleum exploration

[J].Spectroscopy and Spectral Analysis,2004,24(11):1 363-1 366.

[本文引用: 1]

何谋春,吕新彪,刘艳荣.

激光拉曼光谱在油气勘探中的应用研究初探

[J].光谱学与光谱分析,2004,24(11):1 363-1 366.

[本文引用: 1]

Lünsdorf N K,Dunkl I,Schmidt B C,et al.

Towards a higher comparability of geothermometric data obtained by raman spectroscopy of carbonaceous material. Part I: Evaluation of biasing factors

[J].Geostandards and Geoanalytical Research,2014,38(1):73-94.

[本文引用: 6]

Reich S,Thomsen C.

Raman spectroscopy of graphite

[J].Philosophical Transactions of the Royal Society of London. Series A: Mathematical,Physical and Engineering Sciences,2004,362(1 824):2 271-2 288.

[本文引用: 1]

Hu Kai,Wilkins R W T.

Laser raman spectroscopy carbon geothermometer—A new method of paleo-geothermal test

[J].Chinese Science Bulletin,1992,37(14):1 302-1 305.

[本文引用: 3]

胡凯,Wilkins RWT.

激光拉曼光谱碳质地温计——一种新的古地温测试方法

[J].科学通报,1992,37(14):1 302-1 305.

[本文引用: 3]

Kouketsu Y,Mizukami T,Mori H,et al.

A new approach to develop the raman carbonaceous material geothermometer for low-grade metamorphism using peak width

[J].Island Arc,2014,23:33-50.

[本文引用: 4]

Tuinstra F,Koenig J L.

Raman spectrum of graphite

[J].The Journal of Chemical Physics,1970,53(3):1 126-1 130.

[本文引用: 5]

Wang Y,Alsmeyer D C,McCreery R L.

Raman spectroscopy of carbon materials: Structural basis of observed spectra

[J].Chemistry of Materials,1990,2(5):557-563.

[本文引用: 2]

Pasteris J D,Wopenka B.

Raman spectra of graphite as indicators of degree of metamorphism

[J].The Canadian Mineralogist,1991,29(1):1-9.

[本文引用: 1]

Wopenka B,Pasteris J D.

Structural characterization of kerogens to granulite-facies graphite: Applicability of raman microprobe spectroscopy

[J].American Mineralogist,1993,78(5/6):533-557.

[本文引用: 1]

Sadezky A,Muckenhuber H,Grothe H,et al.

Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information

[J].Carbon,2005,43(8):1 731-1 742.

[本文引用: 1]

Kwiecinska B,Suárez-Ruiz I,Paluszkiewicz C,et al.

Raman spectroscopy of selected carbonaceous samples

[J].International Journal of Coal Geology,2010,84(3/4):206-212.

[本文引用: 2]

Pimenta M A,Dresselhaus G,Dresselhaus M S,et al.

Studying disorder in graphite-based systems by raman spectroscopy

[J].Physical Chemistry Chemical Physics,2007,9(11):1 276-1 291.

[本文引用: 1]

Dresselhaus M S,Jorio A,Souza Filho A G,et al.

Defect characterization in graphene and carbon nanotubes using raman spectroscopy

[J].Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2010,368(1 932):5 355-5 377.

[本文引用: 2]

Jawhari T,Roid A,Casado J.

Raman spectroscopic characterization of some commercially available carbon black materials

[J].Carbon,1995,33(11):1 561-1 565.

[本文引用: 1]

Beyssac O,Pattison D R M,Bourdelle F.

Contrasting degrees of recrystallization of carbonaceous material in the Nelson aureole, British Columbia and Ballachulish aureole, Scotland, with implications for thermometry based on raman spectroscopy of carbonaceous material

[J].Journal of Metamorphic Geology,2019,37(1):71-95.

[本文引用: 1]

Marcin W.

Fityk: A general-purpose peak fitting program

[J].Journal of Applied Crystallography,2010,43:1 126-1 128.

[本文引用: 2]

Jiao S,Fitzsimons I,Guo J.

Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U-Pb zircon dating

[J].Precambrian Research,2017,303:208-227.

[本文引用: 1]

Jiao S,Guo J H,Wang L,et al.

Short-lived High-temperature Prograde and Retrograde Metamorphism in Shaerqin Sapphirine-bearing metapelites from the Daqingshan Terrane, North China Craton

[J].Precambrian Research,2015,269:31-57.

[本文引用: 1]

Liu S,Tsunogae T,Li W,et al.

Paleoproterozoic granulites from Heling'er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton

[J].Lithos,2012,148:54-70.

[本文引用: 1]

Guo J,Peng P,Chen Y,et al.

UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton

[J].Precambrian Research,2012,222/223:124-142.

[本文引用: 1]

Pasteris J D.

In situ analysis in geological thin-sections by laser raman microprobe spectroscopy: A cautionary note

[J].Society for Applied Spectroscopy,1989,43(3):567-570.

[本文引用: 2]

Wang A,Dhamelincourt P,Dubessy J,et al.

Characterization of graphite alteration in an uranium deposit by micro-raman spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy

[J].Carbon,1989,27(2):209-218.

[本文引用: 2]

Beyssac O,Goffé B,J-P Petitet,et al.

On the characterization of disordered and heterogeneous carbonaceous materials by raman spectroscopy

[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2003,59(10):2 267-2 276.

[本文引用: 2]

Tan P,Dimovski S,Gogotsi Y.

Raman scattering of non-planar graphite: Arched edges, polyhedral crystals, whiskers and cones

[J].Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2004,362(1 824):2 289-2 310.

[本文引用: 4]

Beyssac O,J-N Rouzaud,Goffé B,et al.

Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study

[J].Contributions to Mineralogy and Petrology,2002,143(1):19-31.

[本文引用: 4]

Van Zuilen M A,Fliegel D,Wirth R,et al.

Mineral-templated growth of natural graphite films

[J].Geochimica et Cosmochimica Acta,2012,83:252-262.

[本文引用: 2]

Buseck P R,Beyssac O.

From organic matter to graphite: Graphitization

[J].Elements,2014,10(6):421-426.

[本文引用: 1]

Katagiri G,Ishida H,Ishitani A.

Raman spectra of graphite edge planes

[J].Carbon,1988,26(4):565-571.

[本文引用: 1]

Bernard S,Benzerara K,Beyssac O,et al.

Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks

[J].Earth and Planetary Science Letters,2007,262:257-272.

[本文引用: 1]

Bernard S,Beyssac O,Benzerara K.

Raman mapping using advanced line-scanning systems: Geological applications

[J].Society for Applied Spectroscopy,2008,62:1 180-1 188.

[本文引用: 1]

Bernard S,Beyssac O,Benzerara K,et al.

XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis

[J].Carbon,2010,48(9):2 506-2 516.

[本文引用: 1]

Cançado L G,Takai K,Enoki T,et al.

General equation for the determination of the crystallite size La of nanographite by raman spectroscopy

[J].Applied Physics Letters,2006,88(16):163106.

[本文引用: 1]

Vidano R P,Fischbach D B,Willis L J,et al.

Observation of raman band shifting with excitation wavelength for carbons and graphites

[J].Solid State Communications,1981,39(2):341-344.

[本文引用: 2]

Sato K,Saito R,Oyama Y,et al.

D-band raman intensity of graphitic materials as a function of laser energy and crystallite size

[J].Chemical Physics Letters,2006,427(1/3):117-121.

[本文引用: 2]

Quirico E,Rouzaud J N,Bonal L,et al.

Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems

[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2005,61(10):2 368-2 377.

[本文引用: 1]

Henry D G,Jarvis I,Gillmore G,et al.

Assessing low-maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure

[J].International Journal of Coal Geology,2018,191:135-151.

[本文引用: 3]

Everall N,Lumsdon J,Christopher D.

The effect of laser-induced heating upon the vibrational raman spectra of graphites and carbon fibers

[J].Carbon,1991,29(2):133-137.

[本文引用: 1]

Kagi H,Tsuchida I,Wakatsuki M,et al.

Proper understanding of down-shifted Raman spectra of natural graphite: Direct estimation of baser-induced rise in sample temperature

[J].Geochimica et Cosmochimica Acta,1994,58:3 527-3 530.

[本文引用: 1]

Mostefaoui S,Perron C,Zinner E,et al.

Metal-associated carbon in primitive chondrites: Structure, isotopic composition, and origin

[J].Geochimica et Cosmochimica Acta,2000,64(11):1 945-1 964.

[本文引用: 2]

Brolly C,Parnell J,Bowden S.

Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments

[J].Planetary and Space Science,2016,121:53-59.

[本文引用: 4]

Beyssac O,Bollinger L,J-P Avouac,et al.

Thermal metamorphism in the lesser Himalaya of Nepal determined from raman spectroscopy of carbonaceous material

[J].Earth and Planetary Science Letters,2004,225(1/2):233-241.

[本文引用: 5]

AygÜL M,Okay A I,OberhÄNsli R,et al.

Thermal structure of low-grade accreted Lower Cretaceous distal turbidites, the Central Pontides, Turkey: Insights for tectonic thickening of an accretionary wedge

[J].Turkish Journal of Earth Sciences,2015,24:461-474.

[本文引用: 2]

Bellanger M,Augier R,Bellahsen N,et al.

Shortening of the European Dauphinois margin (Oisans Massif, Western Alps): New insights from RSCM maximum temperature estimates and 40Ar/39Ar in situ dating

[J].Journal of Geodynamics,2015,83:37-64.

[本文引用: 1]

Beyssac O,Cox S C,Vry J,et al.

Peak metamorphic temperature and thermal history of the Southern Alps (New Zealand)

[J].Tectonophysics,2016,676:229-249.

[本文引用: 2]

Pecher A.

The metamorphism in the Central Himalaya

[J].Journal of Metamorphic Geology,1989,7(1):31-41.

[本文引用: 1]

Paudel LP,Arita K.

Tectonic and polymetamorphic history of the Lesser Himalaya in central Nepal

[J].Journal of Asian Earth Sciences,2000,18(5):561-584.

[本文引用: 1]

Wiederkehr M,Bousquet R,Ziemann M A,et al.

3-D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material: An example from the margin of the Lepontine dome (Swiss Central Alps)

[J].International Journal of Earth Sciences,2011,100(5):1 029-1 063.

[本文引用: 1]

Galvez M E,Beyssac O,Martinez I,et al.

Graphite formation by carbonate reduction during subduction

[J].Nature Geoscience,2013,6(6):473-477.

[本文引用: 1]

Negro F,Beyssac O,Goffe B,et al.

Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from raman spectroscopy of carbonaceous material

[J].Metamorphic Geology,2006,24(4):309-327.

[本文引用: 1]

Molli G,Vitale Brovarone A,Beyssac O,et al.

RSCM thermometry in the Alpi Apuane (NW Tuscany, Italy): New constraints for the metamorphic and tectonic history of the inner northern Apennines

[J].Journal of Structural Geology,2018,113:200-216.

[本文引用: 1]

Beyssac O,Simoes M,Avouac J P,et al.

Late Cenozoic metamorphic evolution and exhumation of Taiwan

[J].Tectonics,2007,26(6).DOI:10.1029/2006TC002064.

[本文引用: 2]

Chen C T,Chan Y C,Lu C Y,et al.

Nappe structure revealed by thermal constraints in the Taiwan metamorphic belt

[J].Terra Nova,2011,23(2):85-91.

[本文引用: 2]

Hirono T,Maekawa Y,Yabuta H.

Investigation of the records of earthquake slip in carbonaceous materials from the Taiwan Chelungpu fault by means of infrared and Raman spectroscopies

[J].Geochemistry,Geophysics,Geosystems,2015,16(5):1 233-1 253.

[本文引用: 3]

Furuichi H,Ujiie K,Kouketsu Y,et al.

Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments

[J].Earth and Planetary Science Letters,2015,424:191-200.

[本文引用: 1]

Kuo L W,Di Felice F,Spagnuolo E,et al.

Fault gouge graphitization as evidence of past seismic slip

[J].Geology,2017,45(11):979-982.

[本文引用: 9]

Kouketsu Y,Shimizu I,Wang Y,et al.

Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

[J].Tectonophysics,2017,699:129-145.

[本文引用: 2]

Kuo L W,Huang J R,Fang J N,et al.

Carbonaceous materials in the fault zone of the longmenshan fault belt: 2. characterization of fault gouge from deep drilling and implications for fault maturity

[J].Minerals,2018,8(9):393.

[本文引用: 1]

Zheng Guodong,Luo Binjie,Cheng Keming,et al.

Thermally simulating dtudy on the vitrinite teflectance and the rvolution of organic materials from various source rocks

[J].Acta Sedimentologica Sinica,1996,12(14):122-130.

[本文引用: 1]

郑国东,罗斌杰,程克明,.

源岩镜质体反射率和有机质演化的热模拟研究

[J].沉积学报,1996,12(14):122-130.

[本文引用: 1]

Kong Weisi,Fang Shi,Yuan Wei,et al.

Research status of vitrinite rreflectivity

[J].Contemporary Chemical Industry,2015,44(5):1 020-1 028.

[本文引用: 2]

孔伟思,方石,袁魏,.

镜质体反射率的研究现状

[J].当代化工,2015,44(5):1 020-1 028.

[本文引用: 2]

Kelemen S R,Fang H L.

Maturity trends in raman spectra from kerogen and coal

[J].Energy Fuels,2001,15:653-658.

[本文引用: 2]

Liu Dehan,Xiao Xianming,Tian Hui,et al.

Sample maturation calculated using raman spectroscopic parameters for solid organics: Methodology and geological applications

[J].Chinese Science Bulletin,2013,58(13):1 228-1 241.

[本文引用: 1]

刘德汉,肖贤明,田辉,.

固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用

[J].科学通报,2013,58(13):1 228-1 241.

[本文引用: 1]

Wilkins R W T,Boudou R,Sherwood N,et al.

Thermal maturity evaluation from inertinites by raman spectroscopy: The “RaMM” technique

[J].International Journal of Coal Geology,2014,128/129:143-152.

[本文引用: 2]

Wilkins R W T,Wang M,Gan H J,et al.

A RaMM study of thermal maturity of dispersed organic matter in marine source rocks

[J].International Journal of Coal Geology,2015,150-151:252-264.

[本文引用: 2]

Wang Min,Li Zhongsheng.

Thermal maturity evaluation of sedimentary organic matter using laser Raman spectroscopy

[J].Acta Petrolei Sinica,2016,37(9):1 129-1 136.

[本文引用: 2]

王民,Li Zhongsheng.

激光拉曼技术评价沉积有机质热成熟度

[J].石油学报,2016,37(9):1 129-1 136.

[本文引用: 2]

Zhang Cong,Xia Xianghua,Yang Yuru,et al.

Raman spectrum characteristics of organic matter in silurian Longmaxi Formation shale of well Anye-1 and its geological significance

[J].Rock and Mineral Analysis,2019,38(1):26-34.

[本文引用: 1]

张聪,夏响华,杨玉茹,.

安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义

[J].岩矿测试,2019,38(1):26-34.

[本文引用: 1]

Nibourel L,Herman F,Cox S C,et al.

Provenance analysis using Raman spectroscopy of carbonaceous material: A case study in the Southern Alps of New Zealand

[J].Journal of Geophysical Research: Earth Surface,2015,120(10):2 056-2 079.

[本文引用: 1]

Jiao R,Herman F,Beyssac O,et al.

Erosion of the southern alps of New Zealand during the last deglaciation

[J].Geology,2018,46(11):975-978.

[本文引用: 1]

Galy V,Beyssac O,France-Lanord C,et al.

Recycling of graphite during himalayan Erosion: A geological stabilization of carbon in the crust

[J].Science,2008,322(5 903):943-945.

[本文引用: 1]

Sparkes R B,Hovius N,Galy A,et al.

Survival of graphitized petrogenic organic carbon through multiple erosional cycles

[J].Earth and Planetary Science Letters,2020,531:115992.

[本文引用: 1]

Airaghi L,de Sigoyer J,Guillot S,et al.

The Mesozoic along-strike tectonometamorphic segmentation of Longmen Shan (eastern Tibetan Plateau)

[J].Tectonics,2018,37:4 655-4 678.

[本文引用: 1]

/