Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (11): 1111-1119    DOI: 10.11867/j.issn.1001-8166.2019.11.1111
综述与评述     
海底峡谷科学深潜考察研究现状
钟广法1,2()
1. 同济大学海洋地质国家重点实验室,上海 200092
2. 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519080
Current Status of Scientific Deep-diving Investigations in Submarine Canyons
Guangfa Zhong1,2()
1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Zhuhai 519080, China
 全文: PDF(669 KB)   HTML
摘要:

海底峡谷是大陆边缘重要的海底地貌形态,也是沉积物从浅海向深海搬运的重要通道和生物多样性热点,对海底科学研究、海底资源开发利用及海底基础设施建设与安全运营具有重要意义。载人深潜和以遥控潜器(ROV)和自主潜器(AUV)为代表的无人深潜技术为人类探索现代海底峡谷提供了重要途径。海底峡谷的深潜科学考察始于1940年代后期,最初为潜水员下潜考察,1960年代开始各种载人和无人潜器逐步应用于海底峡谷的科学探索。载人潜器能将科学家带至海底进行实地观察和精准取样。无人潜器的优点是:成本低、效率高,无人员安全之忧,水下作业时间长,且可以到达人类难以企及的极端海域。深潜技术在海底峡谷地学研究中的应用主要包括海底地形地貌和底质调查,各种侵蚀和沉积底形及其成因分析,块体搬运和流体动力学过程研究,冷泉、冷水珊瑚等生物群落分布及海底生物侵蚀作用研究。欧美发达国家过去70余年在海底峡谷科学深潜考察研究方面所积累的经验和成果对于我国正在兴起的深海深潜科学考察具有重要的启示和借鉴意义。

关键词: 海底峡谷科学深潜考察海底地貌沉积过程生物栖息地    
Abstract:

Submarine canyons represent one of the most important geomorphologic features in continental margins, act as one of the most important conduits of seafloor sediment transporting from shallow waters into the deep sea, and are also biodiversity hotspots. Submarine-canyon investigations are therefore significant for seafloor scientific research, submarine mineral and resource exploitation, and the construction and safety operation of submarine infrastructures. Deep-sea diving by manned submersibles and robot submersibles represented by Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUV) provides an important approach to the investigation of modern submarine canyons. The biggest advantage of manned submersibles is that they can bring scientists to the deep sea for in-place observations and precise sampling, while the robot deep-sea diving has the advantages of low cost, high efficiency, no personnel safety concerns, and the ability to reach the extreme sea areas that are difficult for humans to reach. Deep-sea diving has found broad applications in the geo-scientific research of submarine canyons. These studies cover seafloor topography and geomorphology, seafloor sediments, erosional and depositional bedforms, mass transport processes and flow dynamics, cold springs, cold-water corals and other biological habitats, as well as seafloor biological erosion. The research experience and scientific findings in scientific diving investigation of submarine canyons accumulated by the developed countries in Europe and the United States over the past 70 years are of great reference and significance to the emerging scientific deep-sea diving in China.

Key words: Submarine canyons    Scientific diving    Seafloor geomorphology    Sedimentary processes    Biological habitats.
收稿日期: 2019-10-10 出版日期: 2019-12-31
ZTFLH:  P714+.7  
基金资助: 国家自然科学基金项目“南海深海平原浊流沉积及其构造意义”(41676029);“南海北部洋陆过渡带的重力流沉积”(41876049)
作者简介: 钟广法(1964-),男,湖南临澧人,教授,主要从事地球物理数据解释及深海沉积学研究. E-mail:gfz@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钟广法

引用本文:

钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11): 1111-1119.

Guangfa Zhong. Current Status of Scientific Deep-diving Investigations in Submarine Canyons. Advances in Earth Science, 2019, 34(11): 1111-1119.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.11.1111        http://www.adearth.ac.cn/CN/Y2019/V34/I11/1111

潜器类型 主要技术特点 优势 不足之处
载人潜器 潜器由潜航员操控,可视科学家需要进行考察和取样等作业 载人实地考察;精准取样 需要母船支持;水下作业时间较短;难以到达恶劣海底环境
ROV 潜器通过脐带缆与母船连接,其运行完全由母船控制;依靠光缆与母船进行实时通信 可代替载人潜器完成海底调查和取样等作业;可以达到特殊和复杂地形海域;水下工作时间较长;安全、经济、高效 需要母船支持;脐带缆限制了潜器的活动范围
AUV 潜器完全根据预设指令独自运行;靠声学方法与母船进行通信;适合进行长距离测量作业 具备近底多波束等高精度地形地貌探测功能;无需母船支持,可独自进行较长距离的测量作业;可以到达特殊和复杂地形海域;水下工作时间较长;安全、经济、高效 缺乏来自母船的电力供应,限制了潜器活动的持久性;与母船无光缆连接,通讯完全依赖声学方法
表1  载人潜器与无人潜器的技术特点与优缺点
1 Shanmugam G . Submarine fans: A critical retrospective (1950-2015)[J]. Journal of Palaeogeography, 2016, 5(2): 110-184.
2 Galy V , France-Lanord C , Beyssac O , et al . Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 2007, 450(7 168): 407.
3 Robert K , Jones D O B , Tyler P A , et al . Finding the hotspots within a biodiversity hotspot: Fine-scale biological predictions within a submarine canyon using high-resolution acoustic mapping techniques[J]. Marine Ecology, 2015, 36(4): 1 256-1 276.
4 Shepard F P . Terrestrial topography of submarine canyons revealed by diving[J]. Bulletin of the Geological Society of America, 1949, 60(10): 1 597-1 612.
5 Liu Baohua , Ding Zhongjun , Shi Xianpeng ,et al . Progress of the application and research of manned submersibles used in deep sea scientific investigations[J]. Acta Oceanologica Sinica, 2015, 37 (10): 1-10.
5 刘保华,丁忠军,史先鹏,等 . 载人潜水器在深海科学考察中的应用研究进展[J].海洋学报,2015,37(10):1-10.
6 Wynn R B , Huvenne V A I , Le Bas T P , et al . Autonomous Underwater Vehicles (AUVs): Their past, presence and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352: 451-468.
7 Li Yiping , Li Shuo , Zhang Aiqun . Research status of autonomous & remotely operated vehicle [J]. Journal of Engineering Studies, 2016,8 (2): 217-222.
7 李一平,李 硕,张艾群 .自主/遥控水下机器人研究现状[J]. 工程研究,2016,8(2): 217-222.
8 Cressey D . Submersible loss hits research[J]. Nature, 2014, 509(7 501): 408.
9 Dill R F . Earthquake effects on fill of Scripps submarine canyon[J]. Geological Society of America Bulletin, 1969, 80(2): 321-328.
10 Reimnitz E . Surf-beat origin for pulsating bottom currents in the Rio Balsas Submarine Canyon, Mexico[J]. Geological Society of America Bulletin, 1971, 82(1): 81-90.
11 Dingler J R , Anima R J . Subaqueous grain flows at the head of Carmel Submarine Canyon, California[J]. Journal of Sedimentary Petrology, 1989, 59(2): 280-286.
12 Shepard F P , Curray J R , Inman D L , et al . Submarine geology by Diving Saucer: Bottom currents and precipitous submarine canyon walls continue to a depth of at least 300 meters[J]. Science, 1964, 145(3 636): 1 042-1 046.
13 Shepard F P , Dill R F , Von Rad U . Physiography and sedimentary processes of La Jolla submarine Fan and Fan-Valley, California[J]. The American Association of Petroleum Geologists Bulletin, 1969, 53(2): 390-420.
14 Trumbull J V A , McCamis M J . Geological exploration in an East Coast submarine canyon from a research submersible[J]. Science, 1967, 158(3 799): 370-372.
15 Ross D A . Current action in a submarine canyon[J]. Nature, 1968, 218(5 148): 1 242-1 245.
16 Palmer H D . Erosion of submarine outcrops, La Jolla submarine canyon, California[J]. Geological Society of America Bulletin, 1976, 87(3): 427-432.
17 Hughes Clark J E , Mayer L A , Piper D J W , et al . Pisces IV submersible observation in the epicentral region of the 1929 Grand Banks earthquake[M]//Piper D J W. Submersible Studies off the East Coast of Canada. Geological Society of Canada,1989.
18 Hughes Clark J E , Short A N , Piper D J W , et al . Large-scale current-induced erosion and deposition in the path of the 1929 Grand Banks turbidity current[J]. Sedimentology, 1990, 37(4): 613-629.
19 Eittreim S L , Embley R W , Normark W R , et al . Observations in Monterey Canyon and Fan Valley Using the Submersible ALVIN and a Photographic Sled[R]. U.S. Geological Survey Open-File Report, 1989. DOI:10.3133/ofr89291.
20 Embley R W , Eittreim S L , McHugh C H , et al . Geological setting of chemosynthetic communities in the Monterey Fan Valley system[J]. Deep-Sea Research, 1990, 37(11): 1 651-1 667.
21 McHugh C M , Ryan W B F , Hecker B . Contemporary sedimentary processes in the Monterey Canyon-fan system[J]. Marine Geology, 1992, 107(1/2): 35-50.
22 McHugh C M , Ryan W B F , Schreiber B C . The role of diagenesis in exfoliation of submarine canyons[J]. American Association of Petroleum Geologists Bulletin, 1993, 77(2): 145-172.
23 Orange D L , McAdoo B G , Moore J C , et al . Headless submarine canyons and fluid flow on the toe of the Cascadia accretionary complex[J]. Basin Research, 1997, 9(4): 303-312.
24 McAdoo B G , Orange D L , Screaton E , et al . Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex[J]. Basin Research, 1997, 9(4): 313-324.
25 Hissmann K , Fricke H , Schauer J , et al . The South African coelacanths—An account of what is known after three submersible expeditions[J]. South African Journal of Science, 2006, 102(9/10): 491-500.
26 Paull C K , Caress D W , Ussler III W , et al . High-resolution bathymetry of the axial channels within Monterey and Soquel submarine canyons, offshore central California[J]. Geosphere, 2011, 7(5): 1 077-1 101.
27 Paull C K , Caress D W , Lundsten E , et al . Anatomy of the La Jolla submarine canyon system; offshore Southern California[J]. Marine Geology, 2013, 335: 16-34.
28 Paull C K , Schlining B , Ussler III W , et al . Submarine mass transport within monterey canyon: Benthic disturbance controls on the distribution of chemosynthetic biological communities[M]// Mosher D C. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research. Dordrecht:Springer,2010.
29 Huvenne V A I , Tyler P A , Masson D G , et al . A picture on the wall: Innovative mapping reveals cold-water coral refuge in submarine canyon[J]. PLoS ONE, 2011,6(12): e28755. DOI:10.1371/journal.pone.0028755 .
doi: 10.1371/journal.pone.0028755
30 Baker K D , Wareham V E , Snelgrove P V R , et al . Distributional patterns of deep-sea coral assemblages in three submarine canyons off Newfoundland, Canada[J]. Marine Ecology Progress Series, 2012, 445: 235-249.
31 Brooke S D , Watts M W , Heil A D , et al . Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 137: 131-147.
32 Paull C K , Ussler III W , Greene H G , et al . Bioerosion by chemosynthetic biological communities on Holocene submarine slide scars[J]. Geo-Marine Letters, 2005, 25(1): 11-19.
[1] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[2] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552-558.
[3] 郑勇玲,吴承强,蔡 锋,鲍晶晶,许 艳. 我国海底地貌研究进展及其在东海近海的新发现、新认识[J]. 地球科学进展, 2012, 27(9): 1026-1034.
[4] 王圣杰, 张明军, 李忠勤, 王飞腾, 张晓宇, 李亚举. 天山乌鲁木齐河源1号冰川雪层中NO-3的演化过程[J]. 地球科学进展, 2011, 26(8): 897-904.
[5] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[6] 王兆印,程东升,何易平,王洪铸. 西南山区河流阶梯—深潭系统的生态学作用[J]. 地球科学进展, 2006, 21(4): 409-416.
[7] 时钟,陈吉余,虞志英. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展, 1996, 11(6): 555-562.