Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (2): 284-294    DOI: 10.11867/j.issn.1001-8166.2015.02.0284
新学科·新发展·新技术     
遥感气体探测技术在地震监测中的应用
崔月菊1, 李静2, 王燕艳3, 刘永梅4, 陈志1, 杜建国1
1.中国地震局地震预测重点实验室(中国地震局地震预测研究所),北京100036; 2.防灾科技学院地震科学系,河北 燕郊065201; 3.甘肃省地震局平凉地震中心台,甘肃 平凉744000; 4. 内蒙古自治区地震局西山咀地震台,内蒙古 巴彦淖尔 014400
Application of Gas Remote Sensing Technique in Earthquake Monitoring
Cui Yueju1, Li Jing2, Wang Yanyan3, Liu Yongmei4, Chen Zhi1, Du Jianguo1
1. CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China; 2 .Department of Seismology, Institute of Disaster Prevention, Yanjiao 065201, China; 3. Pingliang Seismic Station, Gansu Bureau of Seismology, Pingliang 744000, China; 4. Xishanzui Seismological Station, Inner Mongolia Bureau of Seismology, Bayannaoer City 014400, China
 全文: PDF(1756 KB)   HTML
摘要:

扼要介绍了卫星高光谱红外大气遥感的原理,气体组分探测技术、反演技术和研究应用的发展历程,着重介绍了该技术在地震监测中的研究应用。遥感气体地球化学在地震监测方面的应用大致可以分为间接观测和直接观测2个方面:①利用卫星红外遥感间接监测地震断裂带脱气;②利用卫星探测大气成分的传感器直接监测地震前后的气体地球化学异常。通过分析地下气体逸散引起的物理化学异常与地震活动的关系,提取地震气体地球化学信息。介绍了典型震例的气体地球化学异常特征及其可能的形成机理,提出了存在的问题以及未来的研究重点。

关键词: 热红外高光谱大气红外探测仪地球化学异常    
Abstract:

The principle of satellite hyperspectral remote sensing technique for atmosphere detection, development of the satellite atmospheric infrared sensors and the retrieval method of gaseous components with hyperspectral remote sensing data were briefly reviewed. The application of hyperspectral remote sensing gas-geochemistry in earthquake monitoring was emphasized, which can be divided into two aspects: ①Degassing from the seismic fracture zone was indirectly retrieved with the thermal infrared sensor; ②Gas-geochemical anomaly associated with the earthquake was directly detected by the atmospheric gas sensors. Gas-geochemical anomalies were obtained by correlating the physical and chemical anomalies caused by gas emission from the underground with the seismic activities. The possible mechanism of anomalies was discussed by analyzing the gas-geochemical anomalies related to the typical earthquake cases. Additionally, the developing aspects in seismic remote-sensing for gas-geochemistry were proposed.

Key words: Thermal Infrared    Geochemistry anomaly.    Hyperspectrum    Atmospheric infrared sensor
出版日期: 2015-02-20
:  P315  
基金资助:

中央高校基本科研业务费专项“榴辉岩石榴石绿辉石稀土分配特征研究”(编号:ZY20130202); 国家自然科学基金项目“汶川地震前后川西地球脱气对大气含碳量的贡献”(编号:41403099)资助

作者简介: 作者简介:崔月菊(1985-),女,河北鹿泉人,助理研究员,主要从事遥感地球化学研究.E-mail:cehuicuiyueju@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
崔月菊
李静
王燕艳
刘永梅
陈志
杜建国

引用本文:

崔月菊, 李静, 王燕艳, 刘永梅, 陈志, 杜建国. 遥感气体探测技术在地震监测中的应用[J]. 地球科学进展, 2015, 30(2): 284-294.

Cui Yueju, Li Jing, Wang Yanyan, Liu Yongmei, Chen Zhi, Du Jianguo. Application of Gas Remote Sensing Technique in Earthquake Monitoring. Advances in Earth Science, 2015, 30(2): 284-294.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2015.02.0284        http://www.adearth.ac.cn/CN/Y2015/V30/I2/284

[1] Latchman J L, Morgan F D O, Aspinall W P. Temporal changes in the cumulative piecewise gradient of a variant of the Gutenberg-Richter relationship, and the imminence of extreme events[J]. Earth-Science Reviews, 2008, 87(3/4): 94-112.
[2] Mignan A. Non-Critical Precursory Accelerating Seismicity Theory (NC PAST) and limits of the power-law fit methodology[J]. Tectonophysics, 2008, 452(1/4): 42-50.
[3] Cui Zijian, Li Zhixiong, Chen Zhangli, et al. A study on the new method for determining small earthquake sequence type—Correlation analysis of spectral amplitude[J]. Chinese Journal of Geophysics, 2012,55(5): 1 718-1 724.[崔子健,李志雄,陈章立,等.判别小震群序列类型的新方法研究——谱振幅相关分析法[J].地球物理学报,2012,55(5): 1 718-1 724.]
[4] Vallianatos F, Triantis D, Tzanis A, et al. Electric earthquake precursors: From laboratory results to field observations[J]. Physics and Chemistry of the Earth, 2004, 29(4/9): 339-351.
[5] Papazachos C B, Karakaisis G F, Scordilis E M, et al. Global observational properties of the critical earthquake model[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1 841-1 855.
[6] Theoharatos C, Ifantis A, Laskaris N A, et al. Charting of geoelectric potential signal dynamics via geometrical techniques and its possible relation to significant earthquakes in Western Greece[J]. Computers and Geosciences, 2008, 34(6): 625-634.
[7] Ondoh T. Investigation of precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes of M>6.5[J]. Advances in Space Research, 2009, 43(2): 214-223.
[8] Reddy D V, Nagabhushanam P. Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India[J]. Applied Geochemistry, 2011, 26(5): 731-737.
[9] King C Y. Gas geochemistry applied to earthquake prediction: An overview[J]. Journal of Geophysical Research, 1986, 91(B12): 12 269-12 281.
[10] King C Y, Zhang W, Zhang Z C. Earthquake-induced groundwater and gas changes[J].Pure and Applied Geophysics, 2006, 163(4): 633-645.
[11] Zhang Wei, Wang Jiyi, E Xiuman. Principles and Methods of Hydrogeochemical Prediction for Earthquakes[M]. Beijing: Education Press, 1988.[张炜,王吉易,鄂秀满. 水文地球化学预报地震的原理与方法[M]. 北京:教育出版社,1988.]
[12] Wakita H, Nakamura Y, Sano Y. Short-term and intermediate-term geochemical precursors[J]. Pure and Applied Geophysics, 1988, 125(2/4): 267-278.
[13] Du J, Si X, Chen Y, et al. Geochemical anomalies connected with great earthquakes in China[C]∥Stefánsson O, ed. Geochemistry Research Advances. New York: Nova Science Publishers, 2008: 57-92.
[14] Du J, Amida K, Ohsawa S, et al. Experimental evidence on imminent and short-term hydrochemical precursors for earthquake[J]. Applied Geochemistry, 2010, 25(4): 586-592.
[15] Zhang J, Gao R, Zeng L, et al. Relationship between characteristics of gravity and magnetic anomalies and the earthquakes in the Longmenshan range and adjacent areas[J]. Tectonophysics, 2010, 491(1/4): 218-229.
[16] Jiang Zaisen, Zhang Xi, Zhu Yiqing, et al. Regional tectonic deformation setting before the Ms 8.1 earthquake in the west of the Kunlun Mountains Pass[J]. Science in China(Series D), 2003, 33(Suppl.): 163-172.[江在森,张希,祝意青,等.昆仑山口西Ms 8.1地震前区域构造变形背景[J]. 中国科学:D辑,2003, 33(增刊): 163-172.]
[17] Jiang Zaisen, Zhang Xi, Zhang Jing, et al. Studies of Extracting Dynamic Imageof Crustal Deformation and Technique for Predicting Great Earthquake[M]. Beijing: Seismological Press, 2013.[江在森,张希,张晶,等. 地壳形变动态图象提取与强震预测技术研究[M]. 北京:地震出版社,2013.]
[18] Wu Yilin. Identification of Characteristics of Seismic Deformation Precursor[M]. Beijing: Seismological Press, 1994.[吴翼麟. 地震形变前兆特征的识别与研究[M]. 北京:地震出版社,1994.]
[19] Qiang Z, Lin C, Li L, et al. Atellitic thermal infrared brightness temperature anomaly image—Short-term and impending earthquake precursors[J]. Science in China(Series D), 1999, 42(3): 313-324.
[20] Tronin A A, Hayakawa M, Molchanov O A. Thermal IR satellite data application for earthquake research in Japan and China[J]. Journal of Geodynamics, 2002, 33(4/5): 519-534.
[21] Kang Chunli. Research on relation between the OLR field change and earthquake activity in Chuan-Dian region of China[J]. Earthquake, 2008, 28(3): 43-48.[康春丽. 川滇地区长波辐射场变化与地震活动关系研究[J]. 地震,2008,28(3): 43-48.]
[22] Massonnet D, Rossi M, Carmona C. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6 433): 138-142.
[23] Shan X J, Ma J, Wang C L, et al. Co-seismic ground deformation and source parameters of Mani M 7.9 earthquake inferred from spaceborne D-InSAR observation data[J]. Science in China(Series D), 2004, 47(6): 481-488.
[24] Olsen E T, Chahine M T, Chen L L, et al. Retrieval of Mid-tropospheric CO 2 Directly from AIRS Measurements[R]. Pasadena CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2008.
[25] Hayakawa M, Molchanov O A, NASDA/UEC Team. Summary report of NASDA’s earthquake remote sensing frontier project[J]. Physics and Chemistry of the Earth, 2004, 29(4/9): 617-625.
[26] Tronin A A. Remote sensing and earthquakes: A review[J]. Physics and Chemistry of the Earth, 2006, 31(4/9): 138-142.
[27] King J I F. The radiative heat transfer of planet Earth[C]∥Van Allen James A, ed. Scientific Use of Earth Satellites. Michigam: Ann Arbor University of Michigan Press, 1956: 133-136.
[28] Kaplan L D. Inference of atmospheric structure from remote radiation measurements[J]. Journal of the Optical Society of America, 1959, 49(10): 1 004-1 007.
[29] Cheng Jie, Liu Qinhuo, Li Xiaowen. Review of trace gases inversion utilizing space-borne hyperspectral infrared remote sensor data[J]. Remote Sensing Information, 2007, (2): 90-97.[程洁,柳钦火,李小文. 星载高光谱红外传感器反演大气痕量气体综述[J]. 遥感信息,2007,(2): 90-97.]
[30] Clarisse L, R’Honi Y, Coheur P F, et al. Thermal infrared nadir observations of 24 atmospheric gases[J]. Geophysical Research Letters, 2011, 38: L10802-L10806.
[31] Smith W L, Woolf H M, Hayden C M, et al. TIROS-N operational vertical sounder[J]. Bulletin of the American Meteorological Society, 1979, 60(10): 1 177-1 187.
[32] Persky M J. A review of spaceborne infrared Fourier transform spectrometers for remote sensing[J]. Review of Scientific Instruments, 1995, 66(10): 4 763-4 797.
[33] Kobayashi H, Shimota A, Yoshigahara C, et al. Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evalution[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1 496-1 507.
[34] Kobayashi H, Shimota A, Kondo K, et al. Development and evaluation of the interferometric monitor for green-house gases: A high-throughput Fourier-transform infrared radiometer for nadir Earth observation[J]. Applied Optics, 1999, 38(33): 6 801-6 807.
[35] Zheng Yuquan. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics, 2011, 4(6): 546-561.[郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学,2011,4(6): 546-561.]
[36] Liu Yi, Lü Daren, Chen Hongbin, et al. Advances in technologies and methods for satellite remote sensing of atmospheric CO 2 [J]. Remote Sensing Technology and Application, 2011, 26(2): 247-254.[刘毅,吕达仁,陈洪滨,等. 卫星遥感大气CO 2 的技术与方法进展综述[J]. 遥感技术与应用,2011,26(2): 247-254.]
[37] Wang Qiao, Li Qing, Chen Liangfu, et al. Technology of Satellite Remote Sensing for Atmospheric Environment Application[M]. Beijing: Science Press, 2011.[王桥,历青,陈良富,等. 大气环境卫星遥感技术及其应用[M]. 北京:科学出版社,2011.]
[38] Dong Chaohua, Li Jun, Zhang Peng, et al. Principle of Hyperspectral Infrared Satellite Remote Sensing for Atmospheric Application[M]. Beijing: Science Press, 2013.[董超华,李俊,张鹏,等. 卫星高光谱红外大气遥感原理和应用[M]. 北京:科学出版社,2013.]
[39] Gille J C, Pan L, Smith M W, et al. Retrieval of carbon monoxide profiles and total methane columns from MOPITT measurements[C]∥Geoscience and Remote Sensing Symposium, 1994.
[40] Aumann H H, Pagano R J. Atmospheric Infrared Sounder on the Earth Observing System[J]. Optical Engineering, 1994, 33(3): 776-784.
[41] Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 253-264.
[42] Frankenberg C, Platt U, Wagner T. Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH 4 and CO 2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT[J]. Atmospheric Chemistry and Physics, 2005, 5(6): 9-22.
[43] Ahmad S P, Levelt P F, Bhartia P K, et al. Atmospheric products from the Ozone Monitoring Instrument (OMI)[C]∥Barnes W L, ed. Earth Observing Systems VIII. Proceedings of SPIE. California, 2003, 5 151: 619-631.
[44] Richter A, Burrow J P. Tropospheric NO 2 from GOME measurements[J]. Advances in Space Research, 2002, 29(11): 1 673-1 683.
[45] Blumstein D, Chalon G, Carlier T, et al. IASI instrument: Technical overview and measured performances[C]∥Infrared Spaceborne Remote Sensing XII Proceedings of SPIE. Denver, Colorado, 2004, 5 543: 196-207.
[46] Razavi1 A, Clerbaux C, Wespes C, et al. Characterization of methane retrievals from the IASI space-borne sounder[J]. Atmospheric Chemistry and Physics, 2009, 9(20): 7 889-7 899.
[47] Clerbaux C, Boynard A, Clarisse L, et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder[J]. Atmospheric Chemistry and Physics, 2009, 9(16): 6 041-6 054.
[48] Shimoda H. Overview of Japanese earth observation programs[C]∥ Meynart R,Neeck S P,Shimoda H,eds. Sensors, Systems, and Next-Generation Satellites XVII. Germany:SPIE Proceedings,2013,doi:10.1117/12.2029454.
[49] Deron S, Gail B, Chad F, et al. Calibration and validation on-orbit plan of the NPOESS Crosstrack Infrared Sounder (CRIS)[C]∥IEEE International, 2011: 3 388-3 390.
[50] Bell A, Daum R. Remote sensing of atmospheric pollution by passive FTIR spectrometry[C]∥Schäfer K, ed.Spectroscipic Atmospheric Environmental Monitoring Tedniq Proceedings of SPIE. Barcelona, 1998, 3 493: 32-43.
[51] Petersen A K, Warneke T, Frankenberg C, et al. First ground-based FTIR observations of methane in the inner tropics over several years[J]. Atmospheric Chemistry and Physics, 2010, 10(15): 7 231-7 239.
[52] Platt U, Perner D, Pätz H W. Simultaneous measurements of atmospheric CH 2 O, O 3 and NO 2 by differential optical absorption[J]. Journal of Geophysical Research, 1979, 84(C10): 6 329-6 335.
[53] Platt U, Perner D. Direct measurements of atmospheric CH 2 O, HNO 2 , O 3 and SO 2 by differential optical absorption in the near UV[J]. Journal of Geophysical Research, 1980, 85(C12): 7 453-7 458.
[54] Buchwitz M, de Beek R, Noёl S, et al. Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set[J]. Atmospheric Chemistry and Physics, 2005, 12(5): 3 313-3 329.
[55] Schneising O, Buchwitz M, Burrows J P, et al. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite-Part 2: Methane[J]. Atmospheric Chemistry and Physics, 2009, 9(2): 443-465.
[56] Barkley M P, Frie β U, Monks P S. Measuring atmospheric CO 2 from space using Full Spectral Initiation (FSI) WFM-DOAS[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3 517-3 534.
[57] Schneising O, Buchwitz M, Burrows J P, et al. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite.Part 1: Carbon dioxide[J]. Atmospheric Chemistry and Physics, 2008, 8(14): 3 827-3 853.
[58] Chahine M, Barnet C, Olsen E T, et al. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO 2 [J]. Geophysical Research Letters, 2005, 22(32), doi:10.1029/2005GL024165.
[59] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of SO 2 from the Aura Ozone Monitoring Instrument (OMI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1 259-1 266.
[60] Liu Yang, Cai Bo, Ban Xianxiu, et al. Research progress of retrieving atmosphere humidity profiles from AIRS data[J]. Advances in Earth Science, 2013, 28(8): 890-896.[刘旸,蔡波,班显秀,等. AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展,2013,28(8): 890-896.]
[61] Carvalho A R, Carvalho J C, Da Silva J D, et al. Neural network based models for the retrieval of methane concentration vertical profiles from remote sensing data[C]∥Anais XIII Simpósio Brasileiro de Sensoriamento Remoto. Florianópolis, Brasil, 2007, 21/26: 6 437-6 442.
[62] Schoeberl M R, Ziemke J R, Bojkov B, et al. A trajectory-based estimate of the tropospheric ozone column using the residual method[J]. Journal of Geophysical Research, 2007, 112: D24S49, doi:10.1029/2007JD008773.
[63] Turquety S, Hadji-Lazaro J, Clerbaux C, et al. Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer[J]. Journal of Geophysical Research, 2004, 109:D21301, doi:10.1029/2004JD004821.
[64] Bai Wenguang. Preliminary Study of Satellite Remote Sensing of Greenhouse Gases Methane of Chinese Academy of Meteorological Sciences[D]. Beijing: Chinese Academy of Meteorological Sciences, 2010.[白文广. 温室气体CH 4 卫星遥感监测初步研究[D]. 北京:中国气象科学研究院,2010.]
[65] Frankenberg C, Platt U, Wagner T. Retrieval of CO from SCIAMACHY onboard ENVISAT: Detection of strongly polluted areas and seasonal patterns in global CO abundances[J]. Atmospheric Chemistry and Physics, 2005, 5(6): 1 639-1 644.
[66] McMillan W W, Barnet C, Strow L, et al. Daily global maps of carbon monoxide from NASA’s atmospheric infrared sounder[J]. Geophysical Research Letters, 2005, 32(11): L11801, doi:10.1029/2004GL021821.
[67] Bousquet P, Ciais P, Miller J B, et al. Contribution of anthropogenic and natural sources to atmospheric methane variability[J]. Nature, 2006, 443(7 110): 439-443.
[68] Hou Yanfang, Wang Shixin, Zhou Yi, et al. Analysis of the carbon dioxide concentration in the lowest atmospheric layers and the factors affecting China based on satellite observations[J]. International Journal of Remote Sensing, 2013, 34(6): 1 981-1 994.
[69] Beirle S, Platt U, Wenig M, et al. Weekly cycle of NO 2 by GOME measurements: A signature of anthropogenic sources[J]. Atmospheric Chemistry and Physics, 2003, 3(6): 2 225-2 232.
[70] Kasibhatla P, Heimann M, Rayner P, et al. Inverse Methods in Global Biogeochemical Cycles[M]. US: American Geophysical Union, 2000.
[71] Bovensmann H, Buchwitz M, Burrows J P, et al. A remote sensing technique for global monitoring of power plant CO 2 emissions from space and related applications[J]. Atmospheric Measurement Techniques, 2010, 3(4): 781-811.
[72] Loyola D, van Geffen J, Valks1 P, et al. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America[J]. Advances in Geosciences, 2008, 1(2): 35-40.
[73] Carn S A, Strow L L, de Souza-Machado S, et al. Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy)[J]. Geophysical Research Letters, 2005, 32: L02301, doi:10.1029/2004GL021034.
[74] Prata A J, Bernardo C. Retrieval of volcanic SO 2 column abundance from atmospheric infrared sounder data[J]. Journal of Geophysical Research, 2007, 112(D20), doi:10.1029/2006JD 007955.
[75] Khokhar M F, Frankenberg C, Van Roozendael M, et al. Satellite observations of atmospheric SO 2 from volcanic eruptions during the time-period of 1996-2002[J]. Advances in Space Research, 2005, 36(5): 879-887.
[76] Justice C O. The MODIS fire products[J]. Remote Sensing of Environment, 2002, 83(1): 244-262.
[77] Martin R V. Satellite remote sensing of surface air quality[J]. Atmospheric Environment, 2008, 42(34): 7 823-7 843.
[78] Zheng Leping. Another source of greenhouse gas CO 2 : The Earth’s interior[J]. Research of Environmental Sciences, 1998, 11(2): 21-24.[郑乐平. 温室气体CO 2 的另一源——地球内部[J]. 环境科学研究,1998,11(2): 21-24.]
[79] Salazar J M L, Perez N M, Hernandez P A, et al. Precursory diffuse carbon dioxide degassing signature related to a 5.1 magnitude earthquake in El Salvado, Central America[J]. Earth and Planetary Science Letters, 2002, 205(1): 81-89.
[80] Weinlich F H, Faber E, Bouškov A, et al. Seismically induced variations in Mariánské Láznē fault gas composition in the NW Bohemian swarm quake region, Czech Republic—A continuous gas monitoring[J]. Tectonophys, 2006, 421(1/2): 89-110.
[81] Walia V, Virk H S, Bajwa B S. Radon precursory signals for some earthquakes of magnitude >5 occurred in NW Himalaya: An overview[J]. Pure and Applied Geophysics, 2006, 163(4): 711-721.
[82] Walia V, Yang T F, Hong W L, et al. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Applied Radiation and Isotopes, 2009, 67(10): 1 855-1 863.
[83] Zhou X, Du J, Chen Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan M S 8.0 earthquake, southwestern China[J]. Geochemical Transactions, 2010, 11(5), doi:10.1186/1467-4866-11-5.
[84] Quattrocchi F, Galli G, Gasparini A, et al. Very slightly anomalous leakage of CO 2 , CH 4 and radon along the main activated faults of the strong L’Aquila earthquake (Magnitude 6.3, Italy). Implications for risk assessment monitoring tools & public acceptance of CO 2 and CH 4 underground storage[J]. Energy Procedia, 2011, 4: 4 067-4 075.
[85] Li Y, Du J, Wang X, et al. Spatial variations of soil gas geochemistry in the Tangshan area of Northern China[J]. Terrestrial, Atmospheric & Oceanic Sciences, 2013, 24(3): 323-332.
[86] Voltattorni N, Quattrocchi F, Gasparini A, et al. Soil gas degassing during the 2009 L’Aquila earthquake: Study of the seismotectonic and fluid geochemistry relation[J]. Italian Journal of Geosciences, 2012, 131(3): 440-447.
[87] Uysal I T, Feng Yuexing, Zhao Jianxin, et al. Hydrothermal CO 2 degassing in seismically active zones during the late Quaternary[J]. Chemical Geology, 2009, 265(3/4): 442-454.
[88] Kasimov N S, Kovin M I, Proskuryakov Y V, et al. Geochemistry of the soils of fault zones (exemplified by Kazakhstan)[J]. Soviet Soil Science, 1978, 10(4): 397-406.
[89] Zhu Hongren, Wang Chengmin, Wan Dengbao, et al. A preliminary study on the scale of gaseous geochemistry for determining Seismic intensity[J]. Earthquake Research in China, 1991, 7(1): 59-64.[朱宏任,汪成民,万登堡,等. 地震烈度的气体地球化学标度初探[J]. 中国地震,1991,7(1): 59-64.]
[90] Toutain J P, Baubron J C. Gas geochemistry and seismotectonics: A review[J]. Tectonophys, 1999, 304(1): 1-27.
[91] Dey S, Sarkar S, Singh R P. Anomalous changes in column water vapor after Gujarat earthquake[J]. Advances in Space Research, 2004, 33(3): 274-278.
[92] Ganguly N D. Variation in atmospheric ozone concentration following strong earthquakes[J]. International Journal of Remote Sensing, 2009, 30(2): 349-356.
[93] Singh R P, Kumar S J, Zlotnicki J, et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J]. Applied Geochemistry, 2010, 25(4): 580-585.
[94] Amani A, Mansor S, Pradhan B, et al. Coupling effect of ozone column and atmospheric infrared sounder data reveal evidence of earthquake precursor phenomena of Bam earthquake, Iran[J]. Arabian Journal of Geosciences, 2013, 7(4): 1 517-1 527.
[95] Cui Y, Du J, Zhang D, et al. Anomalies of total column CO and O 3 associated with great earthquakes in recent years[J]. Natural Hazards and Earth System Sciences, 2013, 13(10): 2 513-2 519.
[96] Ganguly N D. The impact of transported ozone-rich air on the atmospheric ozone content following the 26 January 2001 and 7 March 2006 Gujarat earthquake[J].Remote Sensing Letters, 2011, 2(3): 195-202.
[97] Cui Yueju, Du Jianguo, Zhou Xiaocheng, et al. Geochemical anomaly of CO remote sensing associated with Baja California M w 7.2 earthquake in Mexico[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(4): 458-464.[崔月菊,杜建国,周晓成,等. 墨西哥下加利福尼亚M w 7.2地震前后CO遥感地球化学异常[J]. 矿物岩石地球化学通报,2011,30(4): 458-464.]
[98] Cui Yueju. Satellite Hyper-Spectrum Information of Gas Geochemistry Related to Earthquakes[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration, 2011.[崔月菊.地震相关的卫星高光谱气体地球化学信息[D]. 北京:中国地震局地震预测研究所,2011.]
[99] Hamza V M. Tectonic leakage of fault bounded aquifers subject to non-isothermal recharge: A mechanism generating thermal precursors to seismic events[J].Physics of the Earth and Planetary Interiors, 2001, 126(3): 163-177.
[100] Qiang Z J, Xu X D, Dian C G. Thermal infrared anomaly precursor of impending earthquakes[J].Chinese Science Bulletin, 1991, 36(4): 319-323.
[101] Tramutoli V, Di Bello G, Pergola N, et al. Robust satellite techniques for remote sensing of seismically active areas[J]. Annals of Geophysics, 2001, 44(2): 295-312.
[102] Tramutoli V, Aliano C, Corrado R, et al. Abrupt change in greenhouse gases emission rate as a possible genetic model of TIR anomalies observed from satellite in Earthquake active regions[C]∥Proceedings of 33rd International Symposium on Remote Sensing of Environment (ISRSE33). Italy: Stresa, Lago Maggiore, 2009:4-8.
[103] Gorny V I, Salman A G, Tronin A A, et al. The Earth outgoing IR radiation as an indicator of seismic activity[J]. Doklady Akademii Nauk USSR, 1988, 301(1): 67-69.
[104] Ouzounov D, Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data[J]. Advances in Space Research, 2004, 33(3): 268-273.
[105] Xu Xiudeng, Xu Xiangmin, Ma Shengdeng, et al. A preliminary understanding of the imminent atmospheric temperature anomaly genesis[J]. Acta Seismologica Sinica, 1995, 17(1):123-137.[徐秀登,徐向民,马升灯,等. 临震大气增温异常成因的初步认识[J]. 地震学报,1995, 17(1): 123-137.]
[106] Lu Zhenquan, Qiang Zuji, Wu Bihao. A tentative interpretation of the formation of high temperature anomaly in Satellite-based Thermal Infrared Scanning Images(STISI) of the South China Sea before earthquake[J]. Acta Geoscientia Sinica, 2002, 23(1): 42-46.[卢振权,强祖基,吴必豪. 南海临震前卫星热红外增温异常原因初探[J]. 地球学报,2002,23(1): 42-46.]
[107] Cui Yueju, Du Jianguo, Chen Zhi, et al. Remote sensing signals of atmospheric physics and chemistry related to 2010 Yushu M S 7.1 Earthquake[J]. Advances in Earth Science, 2011, 26(7): 787-794.[崔月菊,杜建国,陈志,等. 2010年玉树MS7.1地震前后大气物理化学遥感信息[J]. 地球科学进展,2011,26(7): 787-794.]
[108] Jing Feng, Shen Xuhui, Zhang Tiebao, et al. Variation characteristics in infrared radiation of active fault zone related to earthquakes[J]. Remote Sensing for Land & Resources, 2013, 25(1): 56-60.[荆凤,申旭辉,张铁宝,等. 与地震相关的活动断裂带红外辐射变化特征[J]. 国土资源遥感,2013,25(1): 56-60.]
[109] Yao Qinglin, Qiang Zuji, Wang Yiping. CO release from the Tibetan Plateau before earthquake and increasing temperature anomaly showing in thermal infrared images of satellite[J]. Advances in Earth Science, 2005, 20(5): 505-510.[姚清林,强祖基,王弋平. 青藏高原地震前CO的排放与卫星热红外增温异常[J]. 地球科学进展,2005,20(5): 505-510.]
[110] Guo Guangmeng, Cao Yungang, Gong Jianming. Monitoring anomaly before earthquake with MODIS and MOPITT data[J]. Advances in Earth Science, 2006, 2(7): 695-698.[郭广猛,曹云刚,龚建明. 使用MODIS和MOPITT卫星数据监测震前异常[J]. 地球科学进展,2006,2(7): 695-698.]
[111] Qu Chunyan, Ma Jin, Shan Xinjian. An attempt to observe gas releasing phenomena of the earthquake by using satellite thermal infrared technique[J]. Seismology and Geology, 2004, 26(3): 539-547.[屈春燕,马瑾,单新建. 利用卫星热红外观测地球排气现象的一次尝试[J]. 地震地质,2004,26(3): 539-547.]
[112] Tank V, Pfanz H, Kick H. New remote sensing techniques for the detection and quantification of Earth surface CO 2 degassing[J].Journal of Volcanology and Geothermal Research, 2008, 177(2): 515-524.
[113] Cui Yueju. CO, O 3 and CH 4 Anomalies of Remote Sensing Geochemistry Occurred before and after Great Earthquakes[D]. Beijing: China University of Geosciences (Beijing), 2014.[崔月菊. 大地震前后CO, O 3 和CH 4 遥感地球化学异常特征[D]. 北京:中国地质大学(北京),2014.]
[114] Singh R P, Mehdi W, Gautam R, et al. Precursory signals using satellite and ground data associated with the Wenchuan earthquake of 12 May 2008[J]. International Journal of Remote Sensing, 2010, 31(13):3 341-3 354.
[115] Sun Yutao, Cui Yueju, Liu Yongmei, et al. Remote sensing anomalies of CO and O 3 related to two giant Sumatra earthquakes occurred in 2004 and 2005[J]. Remote Sensing Information, 2014, 29(2): 49-55.[孙玉涛,崔月菊,刘永梅,等. 苏门答腊2004、2005年两次大地震前后CO和O 3 遥感信息[J]. 遥感信息,2014, 29(2): 49-55.]
[116] Singh R P, Cervone G, Singh V P, et al. Generic precursors to coastal earthquakes: Inferences from Denali fault earthquake[J]. Tectonophys, 2007, 431(1/4): 231-240.
[117] Chen Yang. Study on Earthquake-related Anomalous Features of Infrared Remote Sensing[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration, 2011.[陈杨. 地震红外遥感异常特征综合研究:[D]. 北京:中国地震局地震预测研究所,2011.]
[118] Thompson A M, Cicerone R J. Possible perturbations to atmospheric CO, CH 4 , and OH[J]. Journal of Geophysical Research, 1986, 91(D10): 10 853-10 864.
[119] Levy H. Photochemistry of the lower troposphere[J].Planetary and Space Science, 1972, 20(6): 919-935.
[120] Crutzen P J. A discussion of the chemistry of some minor constituents in the stratosphere and troposphere[J].Pure and Applied Geophysics, 1973, 106(5/7):1 385-1 399.
[121] Wofsy S C. Interactions of CH 4 and CO in the Earth’s atmosphere[J]. Annual Review Earth and Planetary Science, 1976, 4: 441-469.
[122] Guo Fengxia, Ju Xiaoyu, Chen Cong. Review and progress of estimate on nitrogen oxide production by lightning[J]. Advances in Earth Science, 2013, 28(3): 305-317.[郭凤霞,鞠晓雨,陈聪. 估算闪电产生氮氧化物量的研究回顾与进展[J]. 地球科学进展,2013,28(3): 305-317.]
[123] Ouzounov D, Liu D, Chunli K, et al. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes[J]. Tectonophysics, 2007, 431(1/4): 211-220.

[1] 王根, 张华, 杨寅. 高光谱大气红外探测器AIRS资料质量控制研究进展[J]. 地球科学进展, 2017, 32(2): 139-150.
[2] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[3] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[4] 刘旸,蔡波,班显秀,袁健,耿树江,赵姝慧,李帅彬. AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展, 2013, 28(8): 890-896.
[5] 王志慧, 刘良云. 黑河中游绿洲灌溉区土地覆盖与种植结构空间格局遥感监测[J]. 地球科学进展, 2013, 28(8): 948-956.
[6] 朱子先, 臧淑英. 基于遗传神经网络的克钦湖叶绿素反演研究[J]. 地球科学进展, 2012, 27(2): 202-208.
[7] 姚云军,程洁,赵少华,贾坤,谢先红,孙亮. 基于热红外遥感的农田蒸散估算方法研究综述[J]. 地球科学进展, 2012, 27(12): 1308-1318.
[8] 崔月菊, 杜建国, 张德会,孙玉涛. 应用于地震预测的遥感气体地球化学[J]. 地球科学进展, 2012, 27(10): 1173-1177.
[9] 燕守勋,武晓波,周朝宪,刘朝晖,庄永成,曹春香,魏欣欣,于彩虹,肖春生. 遥感和光谱地质进展及其对矿产勘查的实践应用[J]. 地球科学进展, 2011, 26(1): 13-29.
[10] 文战久,高 星,姚振兴. 基于“元素含量—面积”模型方法的地球化学场的多重分形模式分析[J]. 地球科学进展, 2007, 22(6): 598-604.
[11] 屈春燕,单新建,马瑾. 地震活动性热红外异常提取方法研究[J]. 地球科学进展, 2006, 21(7): 699-705.
[12] 杨茂森;黎清华;杨海巍. 分形方法在地球化学异常分析中的运用研究——以胶东矿集区为例[J]. 地球科学进展, 2005, 20(7): 809-814.
[13] 闫柏琨;王润生;甘甫平;刘圣伟;杨苏明;陈伟涛;唐攀科. 热红外遥感岩矿信息提取研究进展[J]. 地球科学进展, 2005, 20(10): 1116-1126.
[14] 赵德华,李建龙,宋子键. 高光谱技术提取植被生化参数机理与方法研究进展[J]. 地球科学进展, 2003, 18(1): 94-099.
[15] 赵文金,万晓樵. 藏南定日地区白垩纪中期地球化学异常对海平面上升的响应[J]. 地球科学进展, 2002, 17(3): 331-338.