地球科学进展 ›› 2011, Vol. 26 ›› Issue (1): 13 -29. doi: 10.11867/j.issn.1001-8166.2011.01.0013

综述与评述 上一篇    下一篇

遥感和光谱地质进展及其对矿产勘查的实践应用
燕守勋 1,武晓波 1,周朝宪 2,刘朝晖 3,庄永成 4,曹春香 1,魏欣欣 1,于彩虹 1,肖春生 1   
  1. 1.中国科学院遥感应用研究所,北京100101; 2.有色金属矿产地质调查中心,北京100012;
    3.青海西部资源公司,西宁青海810000; 4.青海省地质调查院,西宁青海810012
  • 收稿日期:2010-04-22 修回日期:2010-08-24 出版日期:2011-01-10
  • 通讯作者: 燕守勋
  • 基金资助:

    国家自然科学基金项目“低概率蚀变岩及相关地质体的亮光谱遥感探测机理与方法研究”(编号:40672198)和“黔西南红粘土型金矿光谱指数研制与ASTER填图研究”(编号:40772199);青海省重大科技攻关项目“青海省东昆仑成矿遥感快速探测技术和主要矿产成矿规律研究”(编号:2006616001)资助.

Remote Sensing and Spectral Geology and  Their  Applications to  Mineral Exploration

Yan Shouxun 1, Wu Xiaobo 1, Zhou Chaoxian 2, Liu Zhaohui 3, Zhuang Yongcheng 4,Cao Chunxiang 1, Wei Xinxin 1, Yu Caihong 1, Xiao Chunsheng 1   

  1. 1.Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing100101, China;
    2.China Geological Survey of Nonferrous Metal Resources, Beijing100012, China;
    3.Qinghai Western Resources Corporation,  Xining 810000, China;
    4.Qinghai Geological and Mineral Exploration Company, Xining 810012, China
  • Received:2010-04-22 Revised:2010-08-24 Online:2011-01-10 Published:2011-01-10

根据2009年Economic Geology 出版的专辑Remote Sensing and Spectral Geology,近年来发表的相关文献以及研究和应用的实践,对遥感与光谱地质进行了综述。内容从测谱学、TM/ETM和ASTER宽波段遥感应用,到地面和航空高光谱遥感应用与热红外遥感。传统的信息填图主要是解译,现代遥感不仅能提取地质和蚀变信息,还能进行其他手段无法进行的有效填图,结合地球物理、地球化学、野外和实验室光谱等,还能加深对矿床成因的理解。现代光谱地质结合XRF和GPS能够对矿物和蚀变带原地定量填图。TM/ETM从铁氧化物和含羥基矿物来提取矿化蚀变信息,大区域快速圈定成矿靶区。ASTER在粘土区SWIR的5个波段,提供了区分粘土矿物类型和一些硫酸盐、碳酸盐的能力,可以区分粘土、高级粘土、绢英岩和青盘岩,以及方解石和白云石。短波区的3个铁波段可以区分黄钾铁矾与赤铁矿和褐铁矿。障碍是需要校正到反射率来区分这些矿物组合,没有辅助数据很难做到这点,这极大地限制了该仪器作为常规勘探工具的能力。Crosta提供了多元统计方法对蚀变带填图,不需要大气校正。ASTER有5个热波段,像元大、信/噪比低。有能力对硅质岩和碳酸盐填图,但噪音多,并不总是有效。航空高光谱具有矿物填图的实用信/噪比。但航天高光谱Hyperion的信/噪比不能满足勘探和填图的要求。热红外是正在发展、尚未应用的勘探工具,其前景是可对硅质、硅酸盐类和碳酸盐填图。高分辨率遥感图像也为矿区快速评价、矿产勘查以及矿山建设提供了有效的技术支持。最后,结合国内外研究进展,讨论了勘查中的数据选择,给出了建设性的结论。

Based on the papers published in journals including the Review in Economic Geology, Volume 16, 2009. Remote Sensing and Spectral Geology, combined with our new achievements in mineral exploration with Crosta method, a review of remote sensing and spectral geology and  their  applications to mineral exploration are presented in this paper. Here the spectroscopy, broadband remote sensing with TM/ETM and ASTER, hyperspectral remote sensing including surface spectral geological application and airborne hyperspectral geological application, additional with thermal infrared geological application are discussed. The traditional information mapping is mainly interpretation. Modern remote sensing can  not only  extract the geological and alteration information, but also  conduct effective mapping, which is unable to do so  with  other methods. Through combining with geophysics, geochemistry and field and laboratory spectra,  modern remote sensing techniques can be used to improve the understanding  of  the metallogenisis. Spectral geology combined with XRF and GPS can quantitatively map  minerals and alteration in the fields. TM/ETM can be used to extract mineralized alteration information from the ironoxide minerals and hydroxyl minerals to outline the targets on large scale. ASTER has five bands in SWIR, which can distinguish argillic from advanced argillic, phyllic, and propylitic assemblages as well as calcite from dolomites. Shorter wavelength bands were designed to distinguish iron oxides. Jarosite can be distinguished from hematite and limonite. A major technical hurdle is that it must be corrected to reflectance to distinguish these assemblages. Crosta (2009) presents a method by which ASTER can be used for alteration mapping without the need of atmospheric correction, by applying multivariate statistics. ASTER has five thermal bands, but the pixels is 90m, too large, and the signal to noise is poor. Silica and carbonates can be mapped with the thermal bands, but it is noisy and does not always work well. Airborne hyperspectral sensors have effective signaltonoise ratio for mineral mapping. The spaceborne Hyperion has poor signaltonoise ratio, and can not be effectively used for mineral exploration and mapping. The thermal data is an underappreciated and underutilized exploration tool. It has the potential for mapping silica, silicates, and carbonates. High spatial resolution image is useful to rapid assessment for new grassroot exploration area, advanced mineral exploration and mine design and construction. At last, the platform and data selection is discussed, and constructive conclusions are presented.

中图分类号: 

[1]Goetz A F H, Rock B N, Rowan L C. Remote sensing foe exploration: An overview[J].Economic Geology,1983, 78:573-590.
[2]Bedell R, Crosta A P, Crunsky E.  Remote sensing and spectral geology[C].Society of Economic Geologists,Inc.,2009,16:xv-xix.
[3]Lyon R J P. Minerals in the Infrared—A Critical Bibliography[M].Stanford: California, Stanford Research Institute, 1962:76.
[4]Moenke H.Spektralanalyse Von Mineralien Und Gesteinen, Eine Anleitung Zur EmissionsUnd Absorptionsspektroskopie[M].Leipzig, Akademie Verlagsges,1962(in German).
[5]Farmer V C. The Infrared Spectra of Minerals\[M\].Mineralogical Society of London, Darking, Surrey, Adlard and Son Ltd., Monograph 4, 1974: 539.
[6]Marel H W, Beutelspacher H. Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures[M]. Msterdam: Elsevier, 1976:396.
[7]Hunt G R,  Ashley R P. Spectra of altered rocks in the visible and near infrared[J].Economic Geology, 1979,74:1 613-1 629.
[8]Hunt G R, Salisbury J W. Visible and nearinfrared spectra of minerals and rocks:I Silicate minerals[J].Modern Geology,1971,1:23-30.
[9]Hunt G R, Salisbury J W. Visible and nearinfrared spectra of minerals and rocks:II. Carbonztes[J]. Modern Geology, 1970, 2:283-300.
[10]Hunt G R, Salisbury J W,  Lenhoff C J. Visible and nearinfrared spectra of minerals and rocks:III. Oxides and hydroxides[J].Modern Geology,1971,2:195-205.
[11]Hunt G R, Salisbury J W, Lenhoff C J. Visible and nearinfrared spectra of minerals and rocks:IV. Sulfides and sulfates[J].Modern Geology,1971,3:1-14.
[12]Hunt G R,  Salisbury J W,  Lenhoff C J. Visible and nearinfrared spectra of minerals and rocks:V: Additional silicates[J].Modern Geology, 1971,4:85-106.
[13]Clark R N, King T, Klefwa M,et al.High spectral resolution reflectance spectroscopy of minerals[J].Journal of Geophysical Research, 1990,95(B8):12 653-12 680.
[14]Hauff P L. SPECMIN-TM-Mineral Identification System and Spectral Library[M].USA:Arvada, Colorado, Spectral International, Inc.,1993,1/2:600.
[15]Yan Shouxun, Zhang Bing, Zhao Yongchao,et al.A review on the VSWIR spectral of minerals and rocks[J].Remote Sensing Techniques and Application,2003, 18(4):191-201.[燕守勋,张兵,赵永超,等.矿物和岩石的可见—近红外光谱综述[J].遥感技术与应用,2003,18(4):191-201.]
[16]Tompson A J B, Phoebe L H, Audrey J R. Alteration mapping in exploration application of ShortWave Infrared (SWIR) spectroscopy, SEG newsletter[C]Number 39. Reprint in Reviews in Economic Geology, Remote Sensing and Spectral Geology, 1999,16:12-23.
[17]Richard Bedell.Remote sensing in mineral exploration, SEG News letter, reprint in 2009 by remote sensing and spectral geology[J].Review in Economic Geology,2004,16:3-10.
[18]Sabine C. Remote sensing strategies for mineral exploration[C]Rencz C, ed. Remote Sensing for the Earth Sciencesmanual of Remote Sensing, 3rded New York: John Wiley and Sons and American Society for Photogrammetry and Remote Sensing (ASPRS), 1999,3:375-447.
[19]Crosta A P,Carlos Roberto De Souza Filho.Mineral exploration with landsat Thematic Mapper(TM)/Enhanced Thematic Mapper plus (ETM+):A review of the foundations,characteristics,data processing,and case studies[C]Review of Economic Geologists,Review in Economic Geology,2009,16:59-82.
[20]Loughlin W P. Geological exploration in western United states by use of airborne scanner imagery[C]Legg C, ed. Remote Sensing: An Operational Technology for the Mining and Petroleum Industries. London, Institute of Mining and Metallurgy,1990:223-241.
[21]Loughlin W P. Principal components analysis for alteration mapping[J].Photogrammatic Engineering Remote Sensing,1991,57:1 163-1 170.
[22]Crosta A P, Moore J M. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas gerais state, Brazil: A prospecting case history in Greenstone belt terrain[C]7th Thematic Conference: Remote Sensing for Exploration Geology. Proceedings, ERIM, Calgary, 1989:1 173-1 187.
[23]Crosta A P. Mapping of Residual Soils by Remote Sensing for Mineral Exploration in SW Minsa Gerais State, Brazil[D]. Impertial College, University of London, 1990:452.
[24]Crosta A P, Rabeilo Antonio. Assessing landsat /TM for hydrothermal alteration mapping in centralwestern Brazil[C]Ninth Thematic Conference on Geologic Remote Sensing Proceedings, Pasadena, Califonia, USA,1993:1 053-1 061.
[25]RutzArmenta J R, ProlLedesma R M. Techniques for enhancing the spectral response of hydrothermal alteration minerals in thematic Mapper images of central Mexico[J].International Journal of Remote Sensing,1998,19: 1 981-2 000.
[26]Conradsen K, Harpoth O. Use of landsat multispectral scanner data for detection and reconnaissance mapping of iron oxide staining in mineral exploration, central east Greenland[J].Economic Geology, 1984,79:1 229-1 244.
[27]Majid H T, Farid M. Iron oxide and hydroxyl enhancement using the crosta method: A case study from the zagros belt,fars province, Iran[J].JAG,2000,2(2):140-146.
[28]Tangestani M H, Moore F. Comparison of three principal component analysis techniques to porphyry copper alteration mapping: A case study, Meiduk area, Kerman, Iran[J].Canadian Journal of Remote Sensing,2001,27(2):176-182.
[29]Tangestani M H, Moore F. Porphyry copper alteration mapping at the Meiduk area, Iran[J].International Journal Remote Sensing,2002, 23(22):4 815-4 825.
[30]Carranza E J M, Hale M. Mineral imaging with thematic mapper data or hydrothermal alteration mapping in heavily vegetation terrain[J].International Journal Remote Sensing,2002, 23(22):4 827-4 852.
[31]Ramadan T, Kontny A. Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein district, SE desert, Egypt[J].Journal of African Earth Sciences,2004,40:89-99.
[32]Ranjbar H, Honarmand M Z. Moezifa application of the crosta technique for porphyry copper alteration mapping, using ETM data in the southern part of the Iranian volcanic sedimentary belt[J].Journal of Asian EarthSciences,2004,24:237-243.
[33]Aydal D, Arda E,Dumanlilar Ö. Application of the Crosta technique for alteration mapping of granitoidic rocks using ETM+ data: Case study from eastern Tauride belt (SE Turkey)[J].International Journal of Remote Sensing, 2007,28(17):3 895-3 913.
[34]Tadesse S. Geology and mineral potential of Ethiopia: A note on geology and mineral map of Ethiopia[J].Journal of African Earth Sciences,2003,36(4):273-313(41).
[35]Masresha G S, Wolf U R. A review of the metallic mineral resource potential of Ethiopia[J].Chronique De La Recherche Miniere,2000,540:11-32.
[36]Teodoro Isnard Ribeiro De Almeida,Carlos Roberto De Souza Filho, Caetano Juliani,et al.Application of remote sensing to geobotany to detect hydrothermal alteration facies in epithermal highsulfide gold deposits in the Amazon region[C]Society of Economic Geologists, Reviews in Economic Geology, 2009,16:135-142.
[37]Teruiya R K, Paradella W R, Dos Santos A R,et al.Integrating airborne SAR, Landsat TM and airborne geophysics data for improving geological mapping in the Amazon region: The Cigano Granite,Carajàs province, Brazil[J].International Journal of Remote Sensing,2008,29(13):3 957-3 974.
[38]Grunsky E, Jeff H, Isabelle M. Predictive mapping of surfacial materials, Schultz lake area (NTS66A), Nunavut, Canada[C]Society of Economic Geologists, Reviews in Economic Geology, 2009,16:177-198.
[39]Rowan L C, Mars J C, Simpson C J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER)[J].Remote Sensing of Environment,2005,99:105-126.
[40]Galvão L S,  Almeida-Filho R,  Vitorello I. Spectral discrimination of hydrothermally altered materials using ASTER shortwave infrared bands: Evaluation in a tropical savannah environment[J]. International Journal of Applied Earth Observation and Geoinformation, 2005,7:107-114.
[41]Hellman M J, Ramsey M S. Analysis of hot springs and associated deposits
in Yellowstone national park using ASTER and AVIRIS remote sensing[J].Journal of Volcanology and Geothermal Research,2004,135:195-219.
[42]Ninomiya Y, Fu B,  Cudahy T J. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor”data[J].Remote Sensing of Environment,2005, 99:127-139.
[43]Vaughan R G, Hook S J, Calvin W M,et al.Surface mineral mapping at Steamboat Springs, Nevada, USA,with multi-wavelength thermal infrared images[J].Remote Sensing of Environment,2005, 99:140-158.
[44]Yu Caihong,Wu Xiaobo,Yan Shouxun,et al.Information extraction of red clay and siliceous limestone in red claytype gold deposit in southwestern Guizhou,China,using SWIR reflectance data of ASTER[C]Presented to The International Conference on Geoinformatics,18-20th,June, Beijing, China,2010.
[45]Perry J L, Vincent R K. ASTER brightness and ratio codes for minerals: Application to lithologic mapping in the westcentral Powder river basin, Wyoming[J].Reviews in Economic Geology, 2009,16:143-168.
[46]Vincent R K. Fundamental of Geological and Environmental Remote Sensing[M]. New York: Prentice Hall, 1997:400.
[47]Caceres F, Ali-Ammar H, Pirard E. Mapping evaporitic minerals in Sud Lipez salt lakes, Bolivia, using remote sensing[C]Society of Economic Geologists, Reviews in Economic Geology,2009,16:199-208.
[48]Yan Shouxun, Zhang Bing, Zhao Yongchao,et al. A review on the technical flow chart and the major techniques of rock and mineral identification with hyperspectral remote sensing[J].Remote Sensing Techniques and Application, 2004,19(1):52-63.[燕守勋,张兵,赵永超,等.高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J].遥感技术与应用,2004,19(1):52-63.]
[49]Crosta A P,  Ducart D F, Carlos Roberto De Souza Filho. Mineral exploration for epithermal gold in northern Patagonia, argentina: From regional  to depositscale prospecting using LandsatTM and terra ASTER[C]Society of Economic Geologists, Reviews in Economic Geology, 2009,16:97-108.
[50]Crosta A P, Souza Filho C R, Azevedo F,et al.Targeting key alteration minerals in epithermal deposits in Patagonia, Argetina, using ASTER imagery and principal component analysis[J].International Journal of Remote Sensing,2003,24:4 233-4 240.
[51]Seoane J C S, Castro N A, Osako L S,et al.Multispectral imagery applied to nickel laterite exploration: The conceicao do araguaia discovery[C]Society of Economic Geologists, Reviews in Economic Geology, 2009,16:109-122.
[52]Ma Jianwen. A research on the method of quickly extract alteration information using TM data[J]. Journal of Remote Sensing, 1997,(3):22-26.[马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,(3):22-26.]
[53]Yang Jinzhong. A research on the technical method system to extract remote sensing anomaly using multiple spectral remote sensing[J].Remote Sensing for Land & Resources,2007,(4):43-47.[杨金中.多光谱遥感异常提取技术方法体系研究[J].国土资源遥感,2007,(4):43-47.]
[54]Zhang Yujun, Yang Jianmin. The extracting method of alteration information in the background rock outcropped areas using remote sensing[J].National Resource Remote Sensing, 1998,(2):46-53.[张玉君,杨建民.基岩裸露区蚀变遥感信息的提取方法[J].国土资源遥感,1998,(2):46-53.]
[55]Zhang Yujun, Yang Jianmin, Chen Bi. A research and application of alteration information extracting method using ETM—Geological pursuant and spectral precondition[J].National Resource Remote Sensing, 2002,(4):30-36.[张玉君,杨建民,陈蔽. ETM (TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感, 2002,(4):30-36.]
[56]Wu Dewen, Zhu Guchang, Zhang Yuanfei, et al.Multiple data analysis and mineralized alteration information extracting model with remote sensing[J].National Resource Remote Sensing, 2006,67(1):22-30.[吴德文,朱谷昌,张远飞,等.多元数据分析与遥感矿化蚀变信息提取模型[J].国土资源遥感,2006,67(1):22-30.]
[57]Taranik J V,   Aslett Z L. Development of hyperspectral imaging for mineral exploration[C]Society of Economic Geologists, Review in Economic Geology, 2009,16:83-95.
[58]Thompson A, Scott K, Huntington J, et al.Mapping mineralogy with reflectance spectroscopy: Examples from volcanogenic massive sulfide deposits[C]]Society of Economic Geologists, Reviews in Economic Geology, 2009,16:25-40.
[59]Cudahy T, Hewson R,  Caccetta M,et al.Drill core logging of plagioclase feldspar composition and other minerals associated with archean gold mineralization at Kambalda, western Australia, using bidirectional thermal infrared reflectance system[C]]Society of Economic Geologists, Reviews in Economic Geology, 2009,16:223-235.
[60]Yan Shouxun. A comparative research to illite crystallinity and clay mineral spectral index for subdivision of very lowgrade metamorphic belt along a geological section in the Youjiang sedimentary basin, Guangxi Zhuang Autonomous region, southwest of China[J].Science in China,2005,47(9):834-845.
[61]Coulter D W, Hauff P L, Sares M A, et al.Hyperspectral remote sensing of a mineralized system in the grizzly peak caldera, Colorado: Implications for exploration and acid drainage baseline[C]]Society Of Economic Geologists, Review in Economic Geology, 2009,16:123-124.
[62]Zamudio J A.Focusing field exploration efforts, using results from hyperspectral data analysis of the EI capitan goldplantinum group metalsiron deposit, New Mexico[C]]Society Of Economic Geologists, Review in Economic Geology,2009,16:169-176.
[63]Rogge D M, Rivard B, Harris J,et al.Application of hyperspectral data for remote predictive mapping, Baffin Island, Canada[C]]Society Of Economic Geologists, Review in Economic Geology, 2009,16:209-222.
[64]Yan Baikun, Wang Runsheng, Gan Fuping, et al. The progress of research on rock and mineral information extraction using TIR[J].Advances in Earth Science, 2005,20(10):1 116-1 126.[闫柏琨 ,王润生 ,甘甫平,等.热红外遥感岩矿信息提取研究进展[J].地球科学进展,2005,20(10):1 116-1 126.]
[65]Taranik J V, Coolbaugh M F,  Vaughan R G. A overview of thermal infrared remote sensing and mineral exploration in the Great Basin, western United States[C]]Society of Economic Geologists, Reviews in Economic Geology, 2009,16:41-57.
[66]Gan Fuping, Wang Runsheng, Ma Yenai, et al.Alteration extraction method based on spectral matching and filtering[J].China Image and Graphics Journal, 2003,8(2):147-150.[甘甫平,王润生,马蔼乃,等.基于光谱匹配滤波的蚀变信息提取[J].中国图象图形学报, 2003,8(2):147-150.]
[67]Zhang Zonggui, Wang Runsheng, Guo Dahai,et al. A Research on Mineral Identification Method and Technique with Hyperspectral Remote Sensing and Analysis to the Affect Factors[M]. Beijing: Geological Publication House, 2006.[张宗贵,王润生,郭大海,等. 成像光谱岩矿识别方法与技术研究和影响因素分析[M].北京:地质出版社,2006.]
[68]Zhang Jielin.A research on uranium resource identification technique using Hhyperspectral remote sensing[C]]Li Ziying, eds. Compilation of Theses on Nuclear Science and Technique.Beijing: Geological Publishing House, 2009: 211-219.[张杰林, 铀矿资源高光谱信息识别技术研究[C]]李子颖主编:核地质科技论文集.北京:地质出版社,2009:211-219.]
[69]Wei Xinxin, Yan Shouxun. Comparative research on the demonstration of the target detection arithmetic to detect the geological small target[J].Remote Sensing Technique and Application, 2010,25(1):77-83.[魏欣欣,燕守勋.比较研究目标探测算法在地质小目标探测上的性能[J].遥感技术与应用,2010,25(1):77-83.]
[70]Newmont Australia Co, Ltd, Jones D G. Gold Deposits in Central Victorian, Australia[M].Australia: Western Australia Press, 1988:13.
[71]Kalinnowski A, Olive S. ASTER Mineral Index Processing Manual[M]. Remote Sensing Applications, Geoscience Australia, 2004.
[72]Hubbard B E, Crowley J K. Mineral mapping on the ChileanBolivian Altiplano using coorbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions[J].Remote Sensing of Environment, 2005, 99: 173-186.
[73]Hubbard B E, Crowley J K, Zimbelman D R. Comparative alteration mineral mapping using visible to shortwave infrared ( 0.4-2.5  μm) Hyperion, ALI and ASTER imagery[J].IEEE Transcations on Geoscience and Remote Sensing,2003, 41:1 401-1 410.
[74]Wang Runsheng.Strategic consideration to the development of the geological remote sensing[J].National Resource Remote Sensing, 2008, 75(1):1-12.[王润生.遥感地质技术发展的战略思考[J].国土资源遥感,2008,75(1):1-12.]
[75]Clark R N, Gallagher A J, Swayze G A. Material absorption band depth mapping of imaging spectrometer data using a complete band shape leastsquares fit with library reference spectra[C]]Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication, 1990:  90-54, 176-186.
[76]Clark R N, Swayze G A, Gallagher A,et al. Mapping with imaging spectrometer data using the complete band shape leastsquares algorithm simultaneously fit to multiple spectral features from multiple materials[C]]Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 1991: 91-28, 2-3.
[77]Clark R N, Swayze G A. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm[C]]Green R O, ed.Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, January 23 26, 1995, JPL Publication 95-1,39-40.
[78]Swayze G A,  Clark R N. Spectral identification of minerals using imaging spectrometry data: Evaluating the Effects of signal to noise and spectral resolution using the tricorder Algorithm[C]] Green R O, ed.Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, 1995, January 23-26, JPL Publication 95-1,157-158 

[1] 姜刚仁. 地壳应力状态地质学研究现状和展望[J]. 地球科学进展, 1992, 7(6): 36-.
阅读次数
全文


摘要