地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1095 -1109. doi: 10.11867/j.issn.1001-8166.2014.10.1095

综述与评述    下一篇

新仙女木事件研究进展 *
丁晓东, 郑立伟, 高树基   
  1. 厦门大学近海海洋环境科学国家重点实验室,福建 厦门 361102
  • 收稿日期:2014-07-01 出版日期:2014-10-20
  • 基金资助:

    国家自然科学基金项目重大研究计划“南海水体硝酸盐动力学与水团示踪”(编号:91328207); 国家自然科学基金面上项目“中国边缘海沉积物氮同位素时空变化与控制因子”(编号:41176059)资助

A Review on the Younger Dryas Event

Ding Xiaodong, Zheng Liwei, Kao Shuji   

  1. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
  • Received:2014-07-01 Online:2014-10-20 Published:2014-10-20

发生在12.9~11.6 ka BP 的一次北半球气候快速变冷——新仙女木(YD)事件在过去30年来一直是古气候研究的热点。当下由于人类活动引起全球变暖,研究类似的快速气候变化事件及其触发机制对于预测未来气候变化具有重要意义。然而时至今日,科学界对YD事件的发生时间、气候效应、触发机制及其全球性意义依然存在很大争议。对比多个高分辨率记录探讨了YD事件的发生时间及其年代学意义,详细总结了南、北半球中高纬地区及低纬地区近年来新发现的YD事件的记录及其气候效应,重点讨论了YD事件触发机制假说的发展与争议,并结合YD事件的研究现状提出了未来研究热点和重要方向。

The Younger Dryas (YD) event which lasted from 12.9~11.6 ka BP is a rapid return to near-glacial conditions with a major impact on global climate that punctuated last glacial-Holocene transition period. The YD event was firstly found in records of mid-high latitude Northern Europe and North Atlantic vicinities and later identified broadly in North Pacific Oceans, Asia, North America, tropics and even in South Hemisphere. The mechanism of YD event is not clear although tremendous efforts have been paid over the past 30 years. Even the precise timing, duration and global impact remain ambiguous. The understanding of the magnitude of YD like event in temporal and spatial scales and its forcing mechanism may help us to forecast the possible environmental and ecological impacts in global scale due to anthropogenic forcing. This article reviewed the progress of studies on the YD event, including the most recent dating of the onset and geographic pattern of climatic impacts, and particularly the triggering mechanisms proposed in recent years. The disparities of precise dates among records for the YD onset may result from counting mistakes, regional environmental responses and rapid fluctuation of atmospheric 14C. Globally, the YD event was characterized by abrupt climate change with increasing anomalies in magnitude toward the poles and opposite signs between Hemispheres, which modulated by bipolar seesaw mechanism. It is generally accepted that the YD event is caused by a slowdown Atlantic Meridional Overturning Circulation (AMOC). However, the triggering mechanism of this slowdown is debatable. Besides the earliest hypothesis of Lake Agassiz outburst, alternative mechanisms such as meltwater discharge into Arctic Ocean, extraterrestrial impact or atmospheric circulation forcing have been proposed under various supportive evidences. Tropical process was suggested to play an additional role in abrupt climate change, of which high latitude was thought to be the modulator. The newest hypothesis suggested that YD event was an integral part of natural climate oscillation rather than a freak excursion. Finally, future directionstohave a complete understanding of the mechanisms of YD event are provided.

中图分类号: 

[1] K. Some west Baltic pollen diagrams[J].Quartär, 1938, 1: 124-139.
[2] S, Clausen H B, Dansgaard W, et al. Irregular glacial interstadials recorded in a new Greenland ice core[J].Nature, 1992, 359(6 393): 311-313.
[3] W, Johnsen S, Clausen H, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J].Nature, 1993, 364(6 434): 218-220.
[4] G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J].Nature, 1993, 365(6 442): 143-147.
[5] P U, Pisias N G, Stocker T F, et al. The role of the thermohaline circulation in abrupt climate change[J].Nature, 2002, 415(6 874): 863-869.
[6] J D, Carlson A E. A global perspective on last glacial maximum to Holocene climate change[J].Quaternary Science Reviews, 2010, 29(15): 1 801-1 816.
[7] A D, Koch P L, Feranec R S, et al. Assessing the causes of late Pleistocene extinctions on the continents[J].Science, 2004, 306(5 693): 70-75.
[8] S. Sudden deaths: The chronology of terminal Pleistocene megafaunal extinction[M]∥Haynes G, et al, eds.American Megafaunal Extinctions at the end of the Pleistocene. Dordrecht, The Netherlands: Springer, 2009: 21-37.
[9] R B, West A, Kennett J P, et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling[J].Proceedings of the National Academy of Sciences, 2007, 104(41): 16 016-16 021.
[10] D J, Holliday V T. Would North American paleoindians have noticed Younger Dryas age climate changes?[J].Journal of World Prehistory, 2010, 23(1): 1-41.
[11] A E. The Younger Dryas climate event[M]∥Elias S A, et al, eds.The Encyclopedia of Quaternary Science 3 (2nd). Columbia, USA: Elsevier, 2013: 126-134.
[12] Dianbing. Recent progress on studies of the spatial structure and dynamics for the Younger Dryas event[J].Geological Review, 2012, 58(2): 341-349. [刘殿兵. 新仙女木 (YD) 事件区域特征及动力机制研究新进展[J].地质论评, 2012, 58(2): 341-349.]
[13] S J. The mysterious onset of the Younger Dryas[J].Quaternary International, 2011, 242(2): 262-266.
[14] Chaoliu, Kang Shichang. Progress in studies on the Younger Dryas event and its trigger mechanisms[J].Journal of Glaciologyand Geocryology, 2006, 28(4): 568-576.[李潮流, 康世昌. 全球新仙女木事件的恢复及其触发机制研究进展[J].冰川冻土, 2006, 28(4): 568-576.]
[15] M, Grootes P M. GISP2 oxygen isotope ratios[J].Quaternary Research,2000, 53(3): 277-284.
[16] J. A first step to reconciling the GRIP and GISP2 ice-core chronologies, 0-14,500 yr BP[J].Quaternary Research, 2002, 57(1): 32-37.
[17] J P, Andersen K K, Bigler M,et al. High-resolution Greenland ice core data show abrupt climate change happens in few years[J].Science, 2008, 321(5 889): 680-684.
[18] O, Brauer A, Wilkes H, et al. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe[J].Nature Geoscience, 2014, 7(2): 109-112.
[19] A, Haug G H, Dulski P, et al. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period[J].Nature Geoscience, 2008, 1(8): 520-523.
[20] Z, Cheng H, Tan M, et al. Timing and structure of the Younger Dryas event in northern China[J].Quaternary Science Reviews, 2012, 41: 83-93.
[21] Y, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J].Science, 2001, 294(5 550): 2 345-2 348.
[22] C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J].Earth and Planetary Science Letters, 2005, 233(1): 71-86.
[23] D, Wang Y, Cheng H, et al. A detailed comparison of Asian Monsoon intensity and Greenland temperature during the Allerød and Younger Dryas events[J].Earth and Planetary Science Letters, 2008, 272(3): 691-697.
[24] K A, Overpeck J T, Lehman S J, et al. Deglacial changes in ocean circulation from an extended radiocarbon calibration[J].Nature, 1998, 391(6 662): 65-68.
[25] T, Arnold M, Tisnerat-Laborde N, et al. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes[J].Nature, 2000, 403(6 772): 877-880.
[26] H, Geel B, Plicht J, et al. Reduced solar activity as a trigger for the start of the Younger Dryas?[J].Quaternary International,2000, 68: 373-383.
[27] K A, Southon J R, Lehman S J, et al. Synchronous radiocarbon and climate shifts during the last deglaciation[J].Science, 2000, 290(5 498): 1 951-1 954.
[28] Q, Barbetti M, Fink D, et al. Atmospheric 14 C variations derived from tree rings during the early Younger Dryas[J].Quaternary Science Reviews, 2009, 28(25): 2 982-2 990.
[29] P J, Baillie M G, Bard E, et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 yeats cal BP[J]. 2009.
[30] R, Kromer B, Björck S, et al. Tree rings and ice cores reveal 14 C calibration uncertainties during the Younger Dryas[J].Nature Geoscience, 2008, 1(4): 263-267.
[31] P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J].Radiocarbon, 2013, 55(4): 1 869-1 887.
[32] K M, Clow G D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition[J].Journal of Geophysical Research: Oceans, 1997, 102(C12): 26 383-26 396.
[33] R B. The Younger Dryas cold interval as viewed from central Greenland[J].Quaternary Science Reviews, 2000, 19(1): 213-226.
[34] J P, Sowers T, Brook E J, et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice[J].Nature, 1998, 391(6 663): 141-146.
[35] M A, Lowell T V, Hall B L, et al. A 10 Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: Implications for seasonality during lateglacial time[J].Quaternary Science Reviews, 2008, 27(25): 2 273-2 282.
[36] G, Alley R, Comer G, et al. The role of seasonality in abrupt climate change[J].Quaternary Science Reviews, 2005, 24(10/11): 1 159-1 182.
[37] A, Endres C, Günter C, et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany[J].Quaternary Science Reviews, 1999, 18(3): 321-329.
[38] D, Blamart D, Ghaleb B, et al. Timing and dynamics of the last deglaciation from European and North African δ 13 C stalagmite profiles-comparison with Chinese and South Hemisphere stalagmites[J].Quaternary Science Reviews, 2006, 25(17): 2 118-2 142.
[39] Grafenstein U, Erlenkeuser H, Brauer A, et al. A mid-European decadal isotope-climate record from 15,500 to 5000 years BP[J].Science, 1999, 284(5 420): 1 654-1 657.
[40] O, Cremer H, Engels S,et al. Lateglacial summer temperatures in the Northwest European lowlands: A chironomid record from Hijkermeer, the Netherlands[J].Quaternary Science Reviews, 2007, 26(19): 2 420-2 437.
[41] J, Lie Ø, Heegaard E, et al. Rapid oceanic and atmospheric changes during the Younger Dryas cold period[J].Nature Geoscience, 2009, 2(3): 202-205.
[42] S, Kerschner H, Maisch M, et al. Latest Pleistocene and Holocene glacier variations in the European Alps[J].Quaternary Science Reviews, 2009, 28(21): 2 137-2 149.
[43] B G, Lundqvist J, Saarnisto M. The Younger Dryas margin of the Scandinavian ice sheet-An introduction[J].Quaternary International, 1995, 28: 145-146.
[44] S, Mangerud J, Svendsen J I. Timing of the younger dryas glacial maximum in western Norway[J].Journal of Quaternary Science, 2012, 27(1): 81-88.
[45] E. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic[J].Science, 2000, 289(5 483): 1 321-1 324.
[46] H M, McManus J F, Oppo D W, et al. Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation[J].Quaternary Science Reviews, 2010, 29(23): 3 336-3 345.
[47] J K, Cortese G, Bjørklund K R. A high-resolution radiolarian-derived paleotemperature record for the Late Pleistocene-Holocene in the Norwegian Sea[J].Paleoceanography, 2002, 17(4): 24-21-24-13.
[48] Vernal A, Hillaire-Marcel C, Bilodeau G. Reduced meltwater outflow from the Laurentide ice margin during the Younger Dryas[J].Nature, 1996, 381: 774-777.
[49] A E, Oppo D W, Came R E, et al. Subtropical Atlantic salinity variability and Atlantic meridional circulation during the last deglaciation[J].Geology, 2008, 36(12): 991-994.
[50] J, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J].Nature, 2004, 428(6 985): 834-837.
[51] R J. Sedimentary facies and sedimentology of the late Quaternary Santa Barbara Basin, site 893[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 146, Part II. College Station, TX (Ocean Drilling Program),1995:295-308.
[52] J, Ingram B. A 20,000-year record of ocean circulation and climate change from the Santa Barbara Basin[J]. Nature, 1995, 377(6 549): 510-514.
[53] J A, Heusser L, Herbert T, et al. High-resolution climatic evolution of coastal northern California during the past 16,000 years[J].Paleoceanography, 2003, 18(1),doi: 10.1029/2002PA000768.
[54] G M, Moser K A, Bloom A M, et al. Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas stade[J].Quaternary Research, 2008, 70(2): 131-140.
[55] D S, Anderson R S, Hu F S, et al. Evidence for a variable and wet Younger Dryas in southern Alaska[J].Quaternary Science Reviews, 2010, 29(11): 1 445-1 452.
[56] J, Wozniak L, Bettis E, et al. Isotopic evidence for Younger Dryas aridity in the North American midcontinent[J].Geology, 2010, 38(6): 519-522.
[57] B, Bartlein P J, Webb T. The magnitudes of millennial-and orbital-scale climatic change in eastern North America during the Late Quaternary[J].Quaternary Science Reviews, 2005, 24(20): 2 194-2 206.
[58] Z, Eicher U. Abrupt climate oscillations during the last deglaciation in central North America[J].Science, 1998, 282(5 397): 2 235-2 238.
[59] J, Huang Y, Oswald W W, et al. Centennial-scale compound-specific hydrogen isotope record of Pleistocene-Holocene climate transition from southern New England[J].Geophysical Research Letters, 2007, 34(19),doi: 10.1029/2007GL030303.
[60] K L, Arundel S T. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona[J].Geology, 2005, 33(9): 713-716.
[61] Y, Polyak V J, Burns S J. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts[J].Nature Geoscience, 2010, 3(2): 114-117.
[62] L, Burdett J, Lund S, et al. Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination[J].Nature, 1997, 388(6 639): 263-265.
[63] J S, Bright J E, Shanahan T M, et al. Late Pleistocene paleohydrology near the boundary of the Sonoran and Chihuahuan Deserts, southeastern Arizona, USA[J].Quaternary Science Reviews, 2009, 28(3): 286-300.
[64] P T, Menounos B, Osborn G. Holocene and latest Pleistocene alpine glacier fluctuations: A global perspective[J].Quaternary Science Reviews, 2009, 28(21): 2 021-2 033.
[65] T V, Fisher T G, Hajdas I, et al. Radiocarbon deglaciation chronology of the Thunder Bay, Ontario area and implications for ice sheet retreat patterns[J].Quaternary Science Reviews, 2009, 28(17): 1 597-1 607.
[66] P, Joseph O, Guilderson T, et al. Coherent high-and low-latitude climate variability during the Holocene warm period[J].Science, 2000, 288(5 474): 2 198-2 202.
[67] R J, Yin J, Gregory J, et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes[J].Journal of Climate, 2006, 19(8):1 365-1 387.
[68] Zhihong, Yao Tandong, Huang Cuilan, et al. Younger Dryas event recorded in Guliya ice core[J].Chinese Science Bulletin, 1997, 42(18): 1 975-1 978. [杨志红, 姚檀栋, 皇翠兰,等. 古里雅冰芯中的新仙女木期事件记录[J].科学通报, 1997, 42(18): 1 975-1 978.]
[69] Yongping, Liu Guangxiu, Shi Yafeng, et al. Climate and environment in the Tibetan Plateau during the Younger Dryas cooling event[J]. Journal of Glaciology and Geocryology, 1996, 18(3): 219-227.[沈永平, 刘光秀, 施雅风,等. 青藏高原新仙女木事件的气候与环境[J].冰川冻土, 1996, 18(3): 219-227.]
[70] Weijian, Li Xiaoqiang, Dong Guangrong, et al. High resolution tufy record in desert/loess transition area during Younger Dryas period[J].Science in China(Series D), 1996, 26(2): 118-124. [周卫健, 李小强, 董光荣,等. 新仙女木期沙漠/黄土过渡带高分辨率泥炭记录[J]. 中国科学: D辑, 1996, 26(2): 118-124.]
[71] Jie, Zhou Wejian, Chen Huizhong,et al. An evidence of East Asian summer monsoon precipitation in stability during Younger Dryas period[J]. Chinese Science Bulletin, 1999, 44(2): 205-208.[周杰, 周卫健, 陈惠忠,等. 新仙女木时期东亚夏季风降水不稳定的证据[J]. 科学通报, 1999, 44(2): 205-208.]
[72] Sen, Qiang Mingrui, Li Baosheng, et al. Rapid climate changes at northwestern margin of East Asian monsoon region during the last deglaciation[J].Geological Review, 2004, 50(1): 106-112. [李森, 强明瑞, 李保生,等. 末次冰消期东亚季风区西北缘气候快速变化事件[J].地质论评, 2004, 50(1): 106-112.]
[73] W, Head M J, An Z, et al. Terrestrial evidence for a spatial structure of tropical-polar interconnections during the Younger Dryas episode[J].Earth and Planetary Science Letters, 2001, 191(3): 231-239.
[74] P, Bian Y, Li B, et al. The Younger Dryas in the west Pacific marginal seas[J]. Science in China (Series D), 1996, 39: 522-532.
[75] Tiegang, Chang Fengming, Yu Xinke. Younger Dryas event and formation of peat layers in the northern Yellow Sea[J]. Earth Science Frontiers, 2010, 17(1): 321-329. [李铁刚, 常凤鸣, 于心科. Younger Dryas 事件与北黄海泥炭层的形成[J]. 地学前缘, 2010, 17(1): 321-329.]
[76] C, Kano A, Hori M, et al. East Asian monsoon evolution and reconciliation of climate records from Japan and Greenland during the last deglaciation[J].Quaternary Science Reviews, 2010, 29(23/24): 3 327-3 335.
[77] G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J].Nature, 2007, 445(7 123): 74-77.
[78] K A, Overpeck J T, Peterson L C, et al. Rapid climate changes in the tropical Atlantic region during the last deglaciation[J].Nature, 1996, 380(7): 51-54.
[79] D W. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination[J].Science, 2003, 301(5 638): 1 361-1 364.
[80] N D, Abbott M B, Rull V, et al. Abrupt Younger Dryas cooling in the northern tropics recorded in lake sediments from the Venezuelan Andes[J].Earth and Planetary Science Letters, 2010, 293(1/2): 154-163.
[81] V, Stansell N D, Montoya E, et al. Palynological signal of the Younger Dryas in the tropical Venezuelan Andes[J].Quaternary Science Reviews, 2010, 29(23/24): 3 045-3 056.
[82] G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene[J].Science, 2001, 293(5 533): 1 304-1 308.
[83] A, Rühlemann C, Arz H, et al. Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period[J].Paleoceanography,2007, 22(4),doi: 10.1029/2006PA001391.
[84] X, Auler A S, Edwards R, et al. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years[J].Geophysical Research Letters, 2007, 34(23),doi: 10.1029/2007GL031149.
[85] E C, Demenocal P B, Marchitto T M. Holocene and deglacial ocean temperature variability in the Benguela upwelling region: Implications for low-latitude atmospheric circulation[J].Paleoceanography, 2005, 20(2),doi: 10.1029/2007GL031149.
[86] F. Hydrological changes in the African tropics since the Last Glacial Maximum[J].Quaternary Science Reviews, 2000, 19(1): 189-211.
[87] L A. Large temperature variability in the southern African tropics since the Last Glacial Maximum[J].Geophysical Research Letters, 2005, 32(8),doi: 10.1029/2004GL022014.
[88] J E, Russell J M, Huang Y, et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years[J].Science, 2008, 322(5 899): 252-255.
[89] I S, Werne J P, Johnson T C. Wet and arid phases in the southeast African tropics since the Last Glacial Maximum[J].Geology, 2007, 35(9): 823-826.
[90] S, Lea D W, Schneider R R, et al. 155,000 years of West African monsoon and ocean thermal evolution[J].Science, 2007, 316(5 829): 1 303-1 307.
[91] E, Schouten S, Schneider R R. Climatic controls on central African hydrology during the past 20,000 years[J].Nature, 2005, 437(7 061): 1 003-1 006.
[92] C, Labeyrie L, Bassinot F, et al. Low-latitude hydrological cycle and rapid climate changes during the last deglaciation[J].Geochemistry, Geophysics, Geosystems, 2007, 8(5),doi: 10.1029/2006GC001514.
[93] A, Cannariato K G, Stott L D, et al. Variability of southwest Indian summer monsoon precipitation during the Buing-uerd[J].Geology, 2005, 33(10): 813-816.
[94] J D, Burns S J, Fleitmann D, et al. A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen[J].Earth and Planetary Science Letters, 2007, 259(3/4): 442-456.
[95] P, Kroon D, Singh A D, et al. Coupled sea surface temperature-seawater δ 18 O reconstructions in the Arabian Sea at the millennial scale for the last 35 ka[J].Paleoceanography, 2008, 23(4),doi: 10.1029/2006PA001292.
[96] M H, Jung S J A, Elderfield H, et al. Sea surface temperatures of the western Arabian Sea during the last deglaciation[J].Paleoceanography, 2007, 22(2),doi: 10.1029/2006PA001292.
[97] M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J].Nature, 2002, 415(6 868): 159-162.
[98] H, von Rad U, Erlenkeuser H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years[J].Nature, 1998, 393(6 680): 54-57.
[99] T, Gagan M K, Beck J W, et al. Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dryas event[J].Nature, 2004, 428(6 986): 927-929.
[100] R, Felis T, Deschamps P, et al. Evidence for tropical South Pacific climate change during the Younger Dryas and the Blling-Allerd from geochemical records of fossil Tahiti corals[J].Earth and Planetary Science Letters, 2009, 288(1): 96-107.
[101] D W, Pak D K, Belanger C L, et al. Paleoclimate history of Galápagos surface waters over the last 135,000yr[J].Quaternary Science Reviews, 2006, 25(11/12): 1 152-1 167.
[102] M, Kienast S S, Calvert S E, et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation[J].Nature, 2006, 443(7 113): 846-849.
[103] A, Sachs J P. Northern timing of deglaciation in the eastern equatorial Pacific from alkenone paleothermometry[J].Paleoceanography, 2008, 23(4),doi:1029/2009PA001593.
[104] B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J].Nature Geoscience, 2010, 3(8): 578-583.
[105] L, Timmermann A, Thunell R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO 2 rise and tropical warming[J].Science, 2007, 318(5 849): 435-438.
[106] A. El Nio-like pattern in ice age Tropical Pacific Sea surface temperature[J].Science, 2002, 297(5 579): 226-230.
[107] L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J].Science, 2002, 297(5 579): 222-226.
[108] W S. The Great Ocean Conveyor: Discovering the Trigger for Abrupt Climate Change[M]. Princeton/Oxford: Princeton University Press, 2010:40-51.
[109] C, Barnola J M, Becagli S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J].Nature, 2006, 444(7 116): 195-198.
[110] J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800,000 years[J].Science, 2007, 317(5 839): 793-796.
[111] E,Indermuhle A, Dallenbach A, et al.Atmospheric CO 2 Concentrations over the Last Glacial Termination[J].Science, 2001, 291(5 501): 112-114.
[112] A, Lavriě J V, Khler P, et al. Constraint of the CO 2 rise by new atmospheric carbon isotopic measurements during the last deglaciation[J].Global Biogeochemical Cycles, 2010, 24(2),doi: 10.1029/2009GB003545.
[113] R F, Ali S, Bradtmiller L I, et al. Wind-Driven Upwelling in the Southern Ocean and the deglacial rise in atmospheric CO 2 [J].Science, 2009, 323(5 920): 1 443-1 448.
[114] E, Pelejero C, De Deckker P, et al. Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia[J].Geophysical Research Letters, 2007, 34(13),doi: 10.1029/2007GL029937.
[115] T T, Lehman S J, Fifield L K, et al. Absence of cooling in New Zealand and the adjacent ocean during the Younger Dryas chronozone[J].Science, 2007, 318(5 847): 86-89.
[116] K, Sachs J P. Sea surface temperatures of southern midlatitudes 0-160 kyr BP[J].Paleoceanography, 2006, 21(2),doi: 10.1029/2005PA001191.
[117] F, Kaiser J, Arz H W, et al. Modulation of the bipolar seesaw in the Southeast Pacific during termination 1[J].Earth and Planetary Science Letters, 2007, 259(3): 400-413.
[118] S, Diz P, Vautravers M J, et al. Interhemispheric Atlantic seesaw response during the last deglaciation[J].Nature, 2009, 457(7 233): 1 097-1 102.
[119] P, Kaplan M, Francois J, et al. Renewed glacial activity during the Antarctic cold reversal and persistence of cold conditions until 11.5 ka in southwestern Patagonia[J].Geology, 2009, 37(4): 375-378.
[120] R M, Lowe D J. Fine-resolution pollen record of late-glacial climate reversal from New Zealand[J].Geology, 2000, 28(8): 759-762.
[121] P W, King D, Zhao J, et al. Late Pleistocene to Holocene composite speleothem 18 O and 13 C chronologies from South Island, New Zealand-did a global Younger Dryas really exist?[J].Earth and Planetary Science Letters, 2005, 230(3): 301-317.
[122] L K, Gagan M K, Zhao J X, et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J].Nat Communication, 2013, 4: 2 908.
[123] C, Shulmeister J, McLea B. Evidence against a significant Younger Dryas cooling event in New Zealand[J].Science, 1998, 281(5 378): 812-814.
[124] M R, Schaefer J M, Denton G H, et al. Glacier retreat in New Zealand during the Younger Dryas stadial[J].Nature, 2010, 467(7 312): 194-197.
[125] W S. Paleocean circulation during the last deglaciation: A bipolar seesaw?[J].Paleoceanography, 1998, 13(2): 119-121.
[126] W H. The Younger Dryas cold spell-a quest for causes[J].Global and Planetary Change, 1990, 3(3): 219-237.
[127] R, McClure B. A model for Northern Hemisphere continental ice sheet variation[J].Quaternary Research, 1976, 6(3): 325-353.
[128] C. Hydrology and ocean circulation[J].Progress in Oceanography, 1982, 11(2): 131-149.
[129] W S, Kennett J P, Flower B P, et al. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode[J].Nature, 1989, 341: 318-321.
[130] L, Peltier W R. Arctic freshwater forcing of the Younger Dryas cold reversal[J].Nature, 2005, 435(7 042): 662-665.
[131] L, Peltier W. A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas[J].Quaternary Science Reviews, 2006, 25(7): 659-688.
[132] T, Waterson N, Fisher T, et al. Testing the Lake Agassiz meltwater trigger for the Younger Dryas[J].Eos, Transactions American Geophysical Union, 2005, 86(40): 365-372.
[133] W S. Was the Younger Dryas triggered by a flood?[J].Science, 2006, 312(5 777): 1 146-1 148.
[134] W S, Denton G H, Edwards R L, et al. Putting the Younger Dryas cold event into context[J].Quaternary Science Reviews, 2010, 29(9/10): 1 078-1 081.
[135] J B, Bateman M D, Dallimore S R, et al. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[J].Nature, 2010, 464(7 289): 740-743.
[136] C, Hillaire-Marcel C. Enhanced sea-ice export from the Arctic during the Younger Dryas[J].Nature Communications, 2012, 3: 647.
[137] Enqing, Tian Jun. Melt-Water-Pulse events and abrupt climate change of the last deglaciation[J]. Chinese Science Bulletin, 2008, 53(12): 1 437-1 447.[黄恩清, 田军. 末次冰消期冰融水事件与气候突变[J].科学通报, 2008, 53(12): 1 437-1 447.]
[138] D J, Kennett J, West A, et al. Nanodiamonds in the Younger Dryas boundary sediment layer[J].Science, 2009, 323(5 910): 94-94.
[139] A V, Mayewski P A, Steffensen J P, et al. Discovery of a nanodiamond-rich layer in the Greenland ice sheet[J].Journal of Glaciology, 2010, 56(199): 747-757.
[140] J H, Weaver J C, Bunch T E, et al. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago[J].Proceedings of the National Academy of Sciences, 2013, 110(23): E2088-E2097.
[141] T E, Hermes R E, Moore A M, et al. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago[J].Proceedings of the National Academy of Sciences, 2012, 109(28): E1903-E1912.
[142] N, Scott A C, Daulton T L, et al. The Younger Dryas impact hypothesis: A requiem[J].Earth-Science Reviews, 2011, 106(3/4): 247-264.
[143] M, Nicoll K, Holliday V, et al. Arguments and evidence against a Younger Dryas impact event[J].Geophysical Monograph Series, 2012, 198: 13-26.
[144] Hoese A, Hoek W Z, Pennock G M, et al. The Younger Dryas impact hypothesis: A critical review[J].Quaternary Science Reviews, 2014, 83: 95-114.
[145] A C, Pinter N, Collinson M E, et al. Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas “impact layer”[J].Geophysical Research Letters, 2010, 37(14),doi: 10.1029/2010GL043345.
[146] T A, Holliday V T, Gingerich J A, et al. An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis[J].Proceedings of the National Academy of Sciences, 2009, 106(43): 18 155-18 158.
[147] T L, Pinter N, Scott A C. No evidence of nanodiamonds in Younger-Dryas sediments to support an impact event[J].Proceedings of the National Academy of Sciences, 2010, 107(37): 16 043-16 047.
[148] F S, Goderis S, Ravizza G, et al. Absence of geochemical evidence for an impact event at the Bølling-Allerød/Younger Dryas transition[J].Proceedings of the National Academy of Sciences, 2009, 106(51): 21 505-21 510.
[149] D J, Holliday V T, Cannon M D, et al. Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago[J].Proceedings of the National Academy of Sciences, 2014,doi: 10.1073/pnas.1401150111
[150] V T, Surovell T, Meltzer D J, et al. The Younger Dryas impact hypothesis: A cosmic catastrophe[J].Journal of Quaternary Science, 2014, 29(6): 515-530.
[151] A, Paul A, Schulz M. The Younger Dryas-an intrinsic feature of late Pleistocene climate change at millennial timescales[J].Earth and Planetary Science Letters, 2004, 222(3/4): 741-750.
[152] H, Edwards R L, Broecker W S, et al. Ice age terminations[J].Science, 2009, 326(5 950): 248-252.
[153] S, Wang Y, Kong X, et al. A possible Younger Dryas-type event during Asian monsoonal Termination 3[J].Science in China (Series D), 2006, 49(9): 982-990.
[154] G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J].Science, 1997, 278(5 341): 1 257-1 266.
[155] C. Abrupt climate change: An alternative view[J].Quaternary Research, 2006, 65(2): 191-203.
[156] I, Bitz C M, Tziperman E. Rain driven by receding ice sheets as a cause of past climate change[J].Paleoceanography, 2009, 24(4),doi: 10.1029/2009PA001778.
[157] A C, Peterson L C. Mechanisms of abrupt climate change of the last glacial period[J].Reviews of Geophysics, 2008, 46(4),doi: 10.1029/2006RG000204.
[158] R, Battisti D S. Challenges to our understanding of the general circulation: Abrupt climate change[M]∥Loreanz E N, et al, eds. The Global Circulation of the Atmosphere. USA: Princeton University Press,2007: 331-371.
[159] A C, Cane M A, Seager R. An orbitally driven tropical source for abrupt climate change[J].Journal of Climate, 2001, 14(11),doi: 10.1175/1570-0442(2001)7014.
[160] Y. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific[J].Geophysical Research Letters, 2003, 30(8),doi: 10.1029/2002GL016612.
[161] D W. Climate impact of Late Quaternary Equatorial Pacific Sea surface temperature variations[J].Science, 2000, 289(5 485): 1 719-1 724.
[162] L, de Garidel-Thoron T, Mix A C,et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene[J].Science, 2001, 293(5 539): 2 440-2 444.
[163] D W. The glacial tropical Pacific-not just a west side story[J].Science, 2002, 297(5 579): 202-203.
[164] R G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J].Nature, 1989, 342(6 250): 637-642.
[165] E, Hamelin B, Delanghe-Sabatier D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti[J].Science, 2010, 327(5 970): 1 235- 1237.
[166] G C, Showers W, Elliot M, et al. The North Atlanti’s 1-2 kyr climate rhythm: Relation to Heinrich events, Dansgaard/Oeschger cycles and the little ice age[J].Geophysical Monograph Series, 1999, 112: 35-58.
[167] Fengming, Li Tiegang. Progress in the Paleoceanography of the Western Pacific warm pool: A review[J]. Advances in Earth Science, 2013, 28(8): 847-858.[常凤鸣, 李铁刚. 西太平洋暖池区古海洋学研究[J].地球科学进展, 2013, 28(8): 847-858.]
[168] Hao, Wang Zhaomin, Shi Jiuxin. The role of the southern Ocean physical processes in global climate system[J].Advances in Earth Science,2012,27(4):398-412.[马浩, 王召民, 史久新. 南大洋物理过程在全球气候系统中的作用[J].地球科学进展, 2012, 27(4): 398-412.]
[169] D, Wang Y, Cheng H, et al. Centennial-scale Asian monsoon variability during the mid-Younger Dryas from Qingtian Cave, central China[J].Quaternary Research, 2013, 80(2): 199-206.
[170] M. Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales[J].Geophysical Research Letters, 2001, 28(3): 539-542.
[171] P A, Sneed S B, Birkel S D, et al. Holocene warming marked by abrupt onset of longer summers and reduced storm frequency around Greenland[J].Journal of Quaternary Science, 2014, 29(1): 99-104.
[172] C, Seidenkrantz M S, Kuijpers A, et al. Ocean lead at the termination of the Younger Dryas cold spell[J].Nature Communication, 2013, 4: 1 664.
[1] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[2] 华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9): 1025-1036.
[3] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[4] 马浩,李春. 南大洋淡水通量的气候效应研究进展[J]. 地球科学进展, 2010, 25(2): 140-146.
[5] 靳立亚,陈发虎. 千百年尺度气候快速变化及其数值模拟研究进展[J]. 地球科学进展, 2007, 22(10): 1054-1065.
[6] 张小曳. 中国大气气溶胶及其气候效应的研究[J]. 地球科学进展, 2007, 22(1): 12-16.
[7] 陈星;赵鸣;张洁. 南水北调对北方干旱化趋势可能影响的初步分析[J]. 地球科学进展, 2005, 20(8): 849-855.
[8] 夏祥鳌;王明星. 气溶胶吸收及气候效应研究的新进展[J]. 地球科学进展, 2004, 19(4): 630-635.
[9] 翦知盡,黄维. 快速气候变化与高分辨率的深海沉积记录[J]. 地球科学进展, 2003, 18(5): 673-680.
阅读次数
全文


摘要