地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1095 -1109. doi: 10.11867/j.issn.1001-8166.2014.10.1095

   下一篇

新仙女木事件研究进展 *
丁晓东( ), 郑立伟, 高树基   
  1. 厦门大学近海海洋环境科学国家重点实验室,福建 厦门 361102
  • 出版日期:2014-10-20
  • 基金资助:
    国家自然科学基金项目重大研究计划“南海水体硝酸盐动力学与水团示踪”(编号:91328207);国家自然科学基金面上项目“中国边缘海沉积物氮同位素时空变化与控制因子”(编号:41176059)资助

A Review on the Younger Dryas Event

Xiaodong Ding, Liwei Zheng, Shuji Kao   

  1. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
  • Online:2014-10-20 Published:2014-10-20

发生在12.9~11.6 ka BP 的一次北半球气候快速变冷——新仙女木(YD)事件在过去30年来一直是古气候研究的热点。当下由于人类活动引起全球变暖,研究类似的快速气候变化事件及其触发机制对于预测未来气候变化具有重要意义。然而时至今日,科学界对YD事件的发生时间、气候效应、触发机制及其全球性意义依然存在很大争议。对比多个高分辨率记录探讨了YD事件的发生时间及其年代学意义,详细总结了南、北半球中高纬地区及低纬地区近年来新发现的YD事件的记录及其气候效应,重点讨论了YD事件触发机制假说的发展与争议,并结合YD事件的研究现状提出了未来研究热点和重要方向。

The Younger Dryas (YD) event which lasted from 12.9~11.6 ka BP is a rapid return to nearglacial conditions with a major impact on global climate that punctuated last glacial-Holocene transition period. The YD event was firstly found in records of midhigh latitude Northern Europe and North Atlantic vicinities and later identified broadly in North Pacific Oceans, Asia, North America, tropics and even in South Hemisphere. The mechanism of YD event is not clear although tremendous efforts have been paid over the past 30 years. Even the precise timing, duration and global impact remain ambiguous. The understanding of the magnitude of YD like event in temporal and spatial scales and its forcing mechanism may help us to forecast the possible environmental and ecological impacts in global scale due to anthropogenic forcing. This article reviewed the progress of studies on the YD event, including the most recent dating of the onset and geographic pattern of climatic impacts, and particularly the triggering mechanisms proposed in recent years. The disparities of precise dates among records for the YD onset may result from counting mistakes, regional environmental responses and rapid fluctuation of atmospheric 14C. Globally, the YD event was characterized by abrupt climate change with increasing anomalies in magnitude toward the poles and opposite signs between Hemispheres, which modulated by bipolar seesaw mechanism. It is generally accepted that the YD event is caused by a slowdown Atlantic Meridional Overturning Circulation (AMOC). However, the triggering mechanism of this slowdown is debatable. Besides the earliest hypothesis of Lake Agassiz outburst, alternative mechanisms such as meltwater discharge into Arctic Ocean, extraterrestrial impact or atmospheric circulation forcing have been proposed under various supportive evidences. Tropical process was suggested to play an additional role in abrupt climate change, of which high latitude was thought to be the modulator. The newest hypothesis suggested that YD event was an integral part of natural climate oscillation rather than a freak excursion. Finally, future directionstohave a complete understanding of the mechanisms of YD event are provided.

中图分类号: 

[1] Jessen K. Some west Baltic pollen diagrams[J].Quartär, 1938, 1: 124-139.
[2] Johnsen S, Clausen H B, Dansgaard W, et al. Irregular glacial interstadials recorded in a new Greenland ice core[J].Nature, 1992, 359(6 393): 311-313.
[3] Dansgaard W, Johnsen S, Clausen H, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J].Nature, 1993, 364(6 434): 218-220.
[4] Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J].Nature, 1993, 365(6 442): 143-147.
[5] Clark P U, Pisias N G, Stocker T F, et al. The role of the thermohaline circulation in abrupt climate change[J].Nature, 2002, 415(6 874): 863-869.
[6] Shakun J D, Carlson A E. A global perspective on last glacial maximum to Holocene climate change[J].Quaternary Science Reviews, 2010, 29(15): 1801-1816.
[7] Barnosky A D, Koch P L, Feranec R S, et al. Assessing the causes of late Pleistocene extinctions on the continents[J].Science, 2004, 306(5 693): 70-75.
[8] Fiedel S. Sudden deaths: The chronology of terminal Pleistocene megafaunal extinction[M]∥Haynes G, et al, eds.American Megafaunal Extinctions at the end of the Pleistocene. Dordrecht, The Netherlands: Springer, 2009: 21-37.
[9] Firestone R B, West A, Kennett J P, et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling[J]. Proceedings of the National Academy of Sciences, 2007, 104(41): 16016-16021.
[10] Meltzer D J, Holliday V T. Would North American paleoindians have noticed Younger Dryas age climate changes?[J].Journal of World Prehistory, 2010, 23(1): 1-41.
[11] Carlson A E. The Younger Dryas climate event[M]∥Elias S A, et al, eds.The Encyclopedia of Quaternary Science 3 (2nd). Columbia, USA: Elsevier, 2013: 126-134.
[12] Liu Dianbing. Recent progress on studies of the spatial structure and dynamics for the Younger Dryas event[J].Geological Review, 2012, 58(2): 341-349.
[刘殿兵. 新仙女木(YD) 事件区域特征及动力机制研究新进展[J].地质论评, 2012, 58(2): 341-349.]
[13] Fiedel S J. The mysterious onset of the Younger Dryas[J].Quaternary International, 2011, 242(2): 262-266.
[14] Li Chaoliu, Kang Shichang. Progress in studies on the Younger Dryas event and its trigger mechanisms[J].Journal of Glaciologyand Geocryology, 2006, 28(4): 568-576.
[李潮流, 康世昌. 全球新仙女木事件的恢复及其触发机制研究进展[J].冰川冻土, 2006, 28(4): 568-576.]
[15] Stuiver M, Grootes P M. GISP2 oxygen isotope ratios[J].Quaternary Research,2000, 53(3): 277-284.
[16] Southon J. A first step to reconciling the GRIP and GISP2 ice-core chronologies, 0-14,500 yr BP[J].Quaternary Research, 2002, 57(1): 32-37.
[17] Steffensen J P, Andersen K K, Bigler M,et al. High-resolution Greenland ice core data show abrupt climate change happens in few years[J].Science, 2008, 321(5 889): 680-684.
[18] Rach O, Brauer A, Wilkes H, et al. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe[J].Nature Geoscience, 2014, 7(2): 109-112.
[19] Brauer A, Haug G H, Dulski P, et al. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period[J].Nature Geoscience, 2008, 1(8): 520-523.
[20] Ma Z, Cheng H, Tan M, et al. Timing and structure of the Younger Dryas event in northern China[J].Quaternary Science Reviews, 2012, 41: 83-93.
[21] Wang Y, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J].Science, 2001, 294(5 550): 2345-2348.
[22] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J].Earth and Planetary Science Letters, 2005, 233(1): 71-86.
[23] Liu D, Wang Y, Cheng H, et al. A detailed comparison of Asian Monsoon intensity and Greenland temperature during the Allerød and Younger Dryas events[J].Earth and Planetary Science Letters, 2008, 272(3): 691-697.
[24] Hughen K A, Overpeck J T, Lehman S J, et al. Deglacial changes in ocean circulation from an extended radiocarbon calibration[J].Nature, 1998, 391(6 662): 65-68.
[25] Goslar T, Arnold M, Tisnerat-Laborde N, et al. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes[J].Nature, 2000, 403(6 772): 877-880.
[26] Renssen H, Geel B, Plicht J, et al. Reduced solar activity as a trigger for the start of the Younger Dryas?[J].Quaternary International,2000, 68: 373-383.
[27] Hughen K A, Southon J R, Lehman S J, et al. Synchronous radiocarbon and climate shifts during the last deglaciation[J].Science, 2000, 290(5 498): 1951-1954.
[28] Hua Q, Barbetti M, Fink D, et al. Atmospheric 14C variations derived from tree rings during the early Younger Dryas[J].Quaternary Science Reviews, 2009, 28(25): 2982-2990.
[29] Reimer P J, Baillie M G, Bard E, et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 yeats cal BP[J]. 2009.
[30] Muscheler R, Kromer B, Björck S, et al. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas[J].Nature Geoscience, 2008, 1(4): 263-267.
[31] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J].Radiocarbon, 2013, 55(4): 1869-1887.
[32] Cuffey K M, Clow G D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition[J].Journal of Geophysical Research: Oceans, 1997, 102(C12): 26 383-26 396.
[33] Alley R B. The Younger Dryas cold interval as viewed from central Greenland[J].Quaternary Science Reviews, 2000, 19(1): 213-226.
[34] Severinghaus J P, Sowers T, Brook E J, et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice[J].Nature, 1998, 391(6 663): 141-146.
[35] Kelly M A, Lowell T V, Hall B L, et al. A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: Implications for seasonality during lateglacial time[J].Quaternary Science Reviews, 2008, 27(25): 2273-2282.
[36] Denton G, Alley R, Comer G, et al. The role of seasonality in abrupt climate change[J].Quaternary Science Reviews, 2005, 24(10/11): 1159-1182.
[37] Brauer A, Endres C, Günter C, et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany[J].Quaternary Science Reviews, 1999, 18(3): 321-329.
[38] Genty D, Blamart D, Ghaleb B, et al. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles-comparison with Chinese and South Hemisphere stalagmites[J].Quaternary Science Reviews, 2006, 25(17): 2118-2142.
[39] von Grafenstein U, Erlenkeuser H, Brauer A, et al. A mid-European decadal isotope-climate record from 15,500 to 5000 years BP[J].Science, 1999, 284(5 420): 1654-1657.
[40] Heiri O, Cremer H, Engels S,et al. Lateglacial summer temperatures in the Northwest European lowlands: A chironomid record from Hijkermeer, the Netherlands[J].Quaternary Science Reviews, 2007, 26(19): 2420-2437.
[41] Bakke J, Lie Ø, Heegaard E, et al. Rapid oceanic and atmospheric changes during the Younger Dryas cold period[J].Nature Geoscience, 2009, 2(3): 202-205.
[42] Ivy-Ochs S, Kerschner H, Maisch M, et al. Latest Pleistocene and Holocene glacier variations in the European Alps[J].Quaternary Science Reviews, 2009, 28(21): 2137-2149.
[43] Andersen B G, Lundqvist J, Saarnisto M. The Younger Dryas margin of the Scandinavian ice sheet-An introduction[J].Quaternary International, 1995, 28: 145-146.
[44] Lohneø S, Mangerud J, Svendsen J I. Timing of the younger dryas glacial maximum in western Norway[J].Journal of Quaternary Science, 2012, 27(1): 81-88.
[45] Bard E. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic[J].Science, 2000, 289(5 483): 1 321-1 324.
[46] Benway H M, McManus J F, Oppo D W, et al. Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation[J].Quaternary Science Reviews, 2010, 29(23): 3336-3345.
[1] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[2] 华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9): 1025-1036.
[3] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[4] 马浩,李春. 南大洋淡水通量的气候效应研究进展[J]. 地球科学进展, 2010, 25(2): 140-146.
[5] 靳立亚,陈发虎. 千百年尺度气候快速变化及其数值模拟研究进展[J]. 地球科学进展, 2007, 22(10): 1054-1065.
[6] 张小曳. 中国大气气溶胶及其气候效应的研究[J]. 地球科学进展, 2007, 22(1): 12-16.
[7] 陈星;赵鸣;张洁. 南水北调对北方干旱化趋势可能影响的初步分析[J]. 地球科学进展, 2005, 20(8): 849-855.
[8] 夏祥鳌;王明星. 气溶胶吸收及气候效应研究的新进展[J]. 地球科学进展, 2004, 19(4): 630-635.
[9] 翦知盡,黄维. 快速气候变化与高分辨率的深海沉积记录[J]. 地球科学进展, 2003, 18(5): 673-680.
阅读次数
全文


摘要