Please wait a minute...
img img
地球科学进展  2014, Vol. 29 Issue (5): 624-631    DOI: 10.11867/j.issn.1001-8166.2014.05.0624
徐祖新1, 郭少斌2
1.中国石油勘探开发研究院,北京,100083; 2.中国地质大学(北京)能源学院,北京,100083
Application of NMR and X-CT Technology in the Pore Structure Study of Shale Gas Reservoirs
Xu Zuxin1, Guo Shaobin2
1. Research Institution of Petroleum Exploration & Development, Beijing 100083,China; 2. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
 全文: PDF(4637 KB)   HTML

为了定量表征页岩储层孔隙结构,应用NMR和CT扫描技术研究中扬子地区陡山沱组页岩储层孔隙结构特征。研究结果表明:①陡山沱组页岩横向弛豫时间(T2)谱为非对称不连续双峰结构,且T2谱的谱峰小,代表页岩孔隙直径小;②发育微孔隙、微裂缝的页岩密度最小,在CT灰度图像中表现为黑色,CT灰度图像经伪彩色增强,可以更直接地观察页岩内部孔隙发育特征;③页岩的三元组构中,矿物、有机组分和孔隙分别具有不同的CT 数分布区间,通常孔隙的CT 数都小于300 HU,因此可通过CT 数来定量识别孔隙;④根据NMR的T2截止值计算了页岩有效孔隙度,并分析了页岩储层中可动流体百分数。

关键词: 孔隙结构陡山沱组CT数页岩气    

From the angle of refinement, nondestructive and quantitative characterization, NMR and CT scanning techniques were used for shale reservoir of pore structure. The results show that: ①The shale T2 spectrum as the asymmetric continuous double peak structure, no single peak T2 spectrum, spectral peak is the peak representing the development of pores; ② The shale micro pore, micro cracks is in the minimum density, CT in gray image is black, gray image by pseudo color enhancement, can more directly observe of shale internal porosity characteristics; ③ The three tuple shale structure, minerals, organic components and pore are of different CT number and CT distribution interval, CT number of pores are usually less than 300 HU, so it can be through the CT number to quantitatively identify pore; ④According to the shale NMR resonance experiment T2 cutoff value of the effective porosity calculation of shale, mobile fluid percent in shale reservoirs was analyzed.

Key words: Doushantuo Formation    Shale gas    Pore structure    CT number.
出版日期: 2014-05-10
:  P618.130.2+1  

中国石油天然气股份有限公司重大科技专项(编号:2011D-07); 国土资源部“全国油气资源战略选区调查与评价”专项(编号:2009QYXQ15-07-05)资助

作者简介: 徐祖新(1988-),男,湖北枝江人,博士研究生,主要从事非常规油气地质与评价研究.
E-mail Alert


徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631.

Xu Zuxin, Guo Shaobin. Application of NMR and X-CT Technology in the Pore Structure Study of Shale Gas Reservoirs. Advances in Earth Science, 2014, 29(5): 624-631.


[1]Yao Suping,Jiao Kun,Li Miaochun, et al. Advances in research of coal and kerogen nanostructure[J]. Advances in Earth Science, 2012,27(4): 368-378.[姚素平,焦堃,李苗春,等.煤和干酪根纳米结构的研究进展[J].地球科学进展,2012,27(4): 368-378.]
[2]Zhang Xuefen, Lu Xiancai, Zhang Linye, et al. Study on the existing form and its petroleum geological significance[J]. Advances in Earth Science, 2010, 25 (6): 597-602.[张雪芬,陆现彩,张林晔,等.页岩气的赋存形式研究及其石油地质意义[J].地球科学进展,2010,25(6): 597-602.]
[3]Ding Wenlong, Xu Changchun, Jiu Kai, et al. Study progress, shale fractures[J]. Advances in Earth Science,2011, 26(2): 135-143.[丁文龙,许长春,久凯,等.泥页岩裂缝研究进展[J].地球科学进展,2011,26(2):135-143.]
[4]Schettler Jr P D,Parmely C R, Juniata C. Contributions to total storage capacity in Devonian shales[C]//SPE Eastern Regional Meeting. Lexington, Kentucky: Society of Petroleum Engineers,1991: 77-88.
[5]Ma Mingfu, Li Wei, Liu Yacun. Sultan oilfield reservoir analysis of pore structure characteristics of Melutan Basin[J]. Petroleum Exploration and Development,2005, 32(6): 121-124.[马明福,李薇,刘亚存.苏丹Melut盆地北部油田储集层孔隙结构特征分析[J].石油勘探与开发,2005,32(6): 121-124.]
[6]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology,2007,46(10) : 55-61.
[7]Bowker K A.Recent development of the Barnett Shale play,Fort Worth Basin: West Texas[J].Geological Society Bulletin,2003,42(6) : 1-11.
[8]Cui Jingwei,Zou Caineng,Zhu Rukai, et al. New advances in shale porosity research[J]. Advances in Earth Science, 2012,27(12): 1 319-1 324.[崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J].地球科学进展,2012,27(12): 1 319-1 324.]
[9]Sondergeld C H,Ambrose R J,Rai C C,et al. Micro-Structuralstudies of gas shales[C]//SPE Unconventional Gas Conference. Pittsburgh, Pennsylvania, USA: Society of Petroleum Engineers, 2010.
[10]Passey Q R, Bohacs K M,Esch W L, et al. From Oil-prone sourcerock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs[C]//CPS/SPE International Oil & Gas Conference and Exhibition in China.Beijing: Society of Petroleum Engineers, 2010.
[11]Slatt M R,Brien R O.Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12): 2 017-2 030.
[12]Loucks R G,Reed R M,Ruppel S C,et al. Morphology, genesis and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shales[J]. Journal of Sedimentary Research,2009,79: 848-861.
[13]Zhong Taixian. Southern marine pore structure characteristics of shale[J]. Natural Gas Industry, 2012, 32 (9): 1-4.[钟太贤. 中国南方海相页岩孔隙结构特征[J]. 天然气工业,2012,32(9):1-4.]
[14]Huang Zhenkai, Chen Jianping, Xue Haitao, et al. The Songliao Basin Cretaceous Qingshankou formation pore structure characteristics of shale[J]. Petroleum Exploration and Development, 2013, 40(1): 58-62.[黄振凯,陈建平,薛海涛,等. 松辽盆地白垩系青山口组泥页岩孔隙结构特征[J]. 石油勘探与开发,2013,40(1): 58-62.]
[15]Xie Xiaoyong, Tang Hongming, Wang Chunhua, et al. Comparison of shale pore size distribution in the nitrogen adsorption method and mercury porosimetry[J]. Natural Gas Industry, 2006, 26(12): 100-102.[谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J]. 天然气工业,2006,26(12):100-102.]
[16]Tian Hua, Zhang Shuichang, Liu Shaobo, et al. Mercury porosimetry and gas adsorption of organic rich shale pore characteristics[J]. Acta Petrolei Sinica, 2012, 33(3): 421-426.[田华,张水昌,柳少波,等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报,2012,33(3): 421-426.]
[17]Yao Yanbin, Liu Dameng, Cai Yidong, et al. The pore fracture fine quantitative characterization based on NMR and X-CT[J].Science in Chinese(Series D),2010, 40(11): 1 598-1 607.[姚艳斌,刘大锰,蔡益栋,等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学:D辑, 2010,40(11): 1 598-1 607.]
[18]Li Yanxia, Li Jinghong. The Upper Sinian Silurian shale gas exploration prospect in the middle Yangtze region[J]. Xinjiang Petroleum Geology, 2010,31 (6): 659-663.[李艳霞,李净红. 中扬子区上震旦统—志留系页岩气勘探远景[J]. 新疆石油地质,2010,31(6):659-663.]
[19]Wang Weimin, Ye Zhaohui, Guo Hekun. Continental reservoir rock NMR experimental study on physical characteristics[J]. Chinese Journal of Magnetic Resonance, 2001, 18 (2): 113-121.[王为民,叶朝辉,郭和坤. 陆相储层岩石核磁共振物理特征的实验研究[J]. 波谱学杂志,2001,18(2): 113-121.]
[20]Xiao Lizhi. Nuclear Magnetic Resonance Imaging Logging and Rock Magnetic Resonance and Its Application[M]. Beijing: Science Press, 1998.[肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社,1998.]
[21]Zhao Yonggang, Wu Fei. Application of nuclear magnetic resonance logging technique in reservoir evaluation[J]. Natural Gas Industry, 2007, 27 (7): 42-44.[赵永刚,吴非. 核磁共振测井技术在储层评价中的应用[J].天然气工业,2007, 27(7): 42-44.]
[22]Zhou Yu, Guo Hekun, Wei Guoqi, et al. The volcano rock bound water saturation of NMR measurement method[J]. Science and Technology Review, 2011, 29 (5): 24-26.[周宇,郭和坤,魏国齐,等. 火山岩束缚水饱和度核磁共振测量方法[J]. 科技导报,2011,29(5): 24-26.]
[23]Li Zhishuo, Yang Zhengming, Liu Xuewei, et al. Sand conglomerate reservoir of NMR parameters analysis[J]. Science and Technology Review, 2010, 28 (7): 88-90.[李治硕,杨正明,刘学伟,等. 特低渗透砂砾岩储层核磁共振可动流体参数分析[J]. 科技导报,2010,28(7) : 88-90.]
[24]Jiang Peng, Guo Hekun, Li Haibo, et al. Low permeability sandstone movable fluid T2 cutoff value experimental study[J]. Well Logging Technology, 2010, 34 (4): 327-330.[姜鹏,郭和坤,李海波,等. 低渗砂岩可动流体T截止值实验研究[J]. 测井技术,2010,34(4): 327-330.]
[25]Sun Junchang, Chen Jingping,Yang Zhengming, et al. Shale reservoir core NMR response characteristics of experimental study[J]. Science and Technology Review, 2012,30(14): 25-30.[孙军昌,陈静平,杨正明,等. 页岩储层岩芯核磁共振响应特征实验研究[J]. 科技导报, 2012,30(14):25-30.]
[26]Yang Gengshe, Xie Dingyi, Zhang Changqing. CT recognition rock damage characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15 (1): 48-54.[杨更社,谢定义,张长庆. 岩石损伤特性的CT 识别[J]. 岩石力学与工程学报, 1996,15(1): 48-54.]
[27]Yang Gengshe, Xie Dingyi, Zhang Changqing, et al. Rock damage characteristics based on CT recognition[J]. Chinese Journal of Rock Mechanics and Engineering, 1999,18(3): 250-254.[杨更社,谢定义,张长庆,等. 岩石损伤扩展力学特性的CT 分析[J]. 岩石力学与工程学报,1999,18(3): 250-254.]
[28]Fan Liuming, Li Ning, Ding Weihua. Digital image pseudo color enhancement method in rock and soil CT image analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(13): 2 257-2 261.[范留明,李宁,丁卫华. 数字图像伪彩色增强方法在岩土CT 图像分析中的应用[J]. 岩石力学与工程学报,2004,23(13): 2 257-2 261.]
[29]He Bin, Ma Tianyu, Wang Yunjian, et al. Visual C++ Digital Image Processing[M]. Beijing: People’s Posts and Telecommunications Press, 2002.[何斌,马天予,王运坚,等.Visual C++数字图像处理[M]. 北京:人民邮电出版社,2002.]
[30]Dorsch J. Determination of Effective Porosity of Mudrocks—A Feasibility Study[R/OL].2012[2012-06-10]. /204203-pSaL2G /web viewable /204203.pdf.
[31]Freeze R A, Cherry J A.Groundwater[M]. New Jersey: Prentice-Hall,1979: 604.
[32]Pearson F J. What is the porosity of a mudrock?[J].Geological Society,Special Publications,1999,158: 9-21.
[33]Yao Y B, Liu D M, Che Y, et al. Petrophysical characterization of coals by low-field Nuclear Magnetic Resonance (NMR)[J]. Fuel, 2009, 89:1 371-1 380.
[34]Coates G R, Xiao L Z, Prammer M G. NMR Logging Principles and Applications[M]. Houston (Texas): Gulf Publishing Company, 1999.
[1] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[2] 琚宜文, 戚宇, 房立志, 朱洪建, 王国昌, 王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[3] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[4] 张盼盼, 刘小平, 王雅杰, 孙雪娇. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11): 1242-1249.
[5] 张雪芬,陆现彩,张林晔,刘庆. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604.