地球科学进展 ›› 2002, Vol. 17 ›› Issue (5): 670 -678. doi: 10.11867/j.issn.1001-8166.2002.05.0670

综述与评述 上一篇    下一篇

地壳风化速率研究综述
续海金 1,马昌前 2   
  1. 1.中国地质大学研究生院,湖北 武汉 430074;2.中国地质大学地球科学学院,湖北 武汉 430074
  • 收稿日期:2002-01-29 修回日期:2002-05-08 出版日期:2002-12-20
  • 通讯作者: 续海金(1976-), 男, 陕西榆林人, 硕士研究生, 主要从事岩石学和岩石土壤学方面的研究.E-mail:ysjys@cug.edu.cn E-mail:ysjys@cug.edu.cn

REVIEW ON WEATHERING RATES IN THE CRUST WEATHERING SYSTEM

XU Hai-jin 1,MA Chang-qian 2   

  1. 1.Graduate School, China University of Geosciences, Wuhan 430074,China;2.Faculty of Earth Science, China University of Geosciences, Wuhan 430074,China
  • Received:2002-01-29 Revised:2002-05-08 Online:2002-12-20 Published:2002-10-01

地壳风化速率研究的理论基础是质量守恒原理和溶液与矿物反应动力学法则。元素在风化过程中的行为受多种因素控制,主要包括基岩风化量、大气沉降量、径流量、生物的输出数量和人为输入量(如施肥)。硅酸盐矿物化学风化过程中,矿物与溶液之间总的化学反应速率是单个反应速率之和,其中涉及到 3个关键参数,即:酸中和能力(ANC)、基本阳离子/无机铝(BC/Al无机)比值和临界负荷(CL)。风化速率的研究主要采用四种方法,即PROFILE模型、基本阳离子损耗、元素输入-输出指数和Sr同位素比值等。PROFILE模型是一个稳定态的综合土壤化学模型,矿物的分解速率、矿物的暴露表面积、土壤水饱和度和土壤层厚度决定着该矿物的风化速率,总的风化速率为各种矿物的风化速率之和。元素损耗,主要是基本阳离子(Ca、Na、K和Mg)的损耗,假设Ti、 Zr和Nb在成土过程中含量稳定并不参与风化反应,那么对于给定的土壤层,化学风化损耗的基本阳离子可以通过比较土层与成土母质之间元素组成的差异来计算。输入-输出指数的假设前提是研究的流域处于稳定状态,一般认为输入指数是大气沉降,输出指数是河流搬运溶解部分、悬浮的非岩屑成因部分和生物营养净吸收部分。Sr同位素在生物和化学作用过程中并不分馏,不同生态系统阳离子场中Sr同位素组成是大气和矿物风化来源的Sr的混合物。

Weathering rates play a significant role in the evolution of geochemistry of the Earth's surface and region environments. The basic theories of calculation of weathering rates are the mass balance and the law of reactions between solutions and minerals. The behavior of the element in weathering is influenced by many factors including weathering of bedrock, atmospheric precipitation, runoff of water, export of biomass and anthropogenic inputs(such as fertilization). Chemical reactions between minerals and solutions contribute to the base cation release rate due to chemical weathering of silicate minerals, and the total specific rate of reaction will be the sum of the rates of the individual reactions. Three key parameters of reactions between solutions and minerals are Acidic Neutral Capacities(ANC). Base Cation/Aluminium ratio(BC/A)and Critical Loads(CL).Methods of calculation of weathering rates mainly include①PROFILE modeling; ②basic cation depletion; ③input-output budget; and ④Stronium isotope ratio. The PROFILE modeling is a steady-stated and integrated soil chemistry model. Weathering rate of a mineral is controlled by dissolvable rate of the mineral, exposed surface area of the mineral. soil moisture saturation and soil layer thickness, and the total weathering rate is obtained by adding the contributions from all minerals. The element depletion is mostly the depletion of base cation such as Ca, Na, K and Mg. In the calculation of weathering rate, it's assumed that Ti,Zr or Nb is resistant, and thus Ti,Zr or Nb is considered to be immobile during weathering. Weathering rate is calculated as the difference between outputs and inputs, provided that the study area is in steady state. In general, the input is considered as the contribution from precipitation, while the output is calculated as the sum of ①river-transported dissolved fraction; ②river-transported suspended non-detrital fraction; and ③biotic nutrient net uptake. It is suggested that Sr isotope is not fractionated during biotic and chemical processes, and Sr isotopic compositions in different ecosystem exchangeable-cation pools ar
e mixtures derived from mineral weathering reactions and atmospheric aerosol.

中图分类号: 

[1] Cui Zhijiu, Li Denwen, Feng Jinliang, et al. Re-comment on planation surface[J]. Chinese Science Bulletin, 2001,46(21): 1 761-1 767. [崔之久,李德文,冯金良,等.夷平面研究的再评述[J]. 科学通报,2001,46(21):1 761-1 767.]
[2] Jōnsson C, Warfvinge P, Sverdrup H. Uncertainty in predicting weathering rate and environmental stress factors with the profile model[J]. Water, Air and Soil Pollution, 1995,81: 1-23.
[3] Taylor A, Blum J D. Soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence[J]. Geology, 1995, 23(11): 979-982.
[4] Bain D C, Langan S J. Weathering rates in catchments calculated by different methods and their relationship to acidic inputs[J]. Water, Air and Soil Pollution, 1995,85: 1 051-1 056.
[5] Lucas Y. The role of plants in controlling rates and products of weathering: Importance of biological pumping [J]. Annual  Review Earth Planet Science, 2001,29: 135-163. 
[6] Miller E K, Blum J D, Friedland A J. Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes[J]. Nature, 1993,362: 438-441.
[7] Paces T. Weathering rates of gneiss and depletion of exchangeable cations in soils under environmental acidification[J]. Journal of the Geological Society, 1986,143: 673-677.
[8] Aagaard P, Helgeson H. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions: I. Theoretical considerations[J]. American Journal of Science, 1982,282: 237-285.
[9] Langan S J, Hodson M E, Bain D C, et al. A preliminary review of weathering rates in relation to their method of calculation for acid sensitive soil parent materials[J]. Water, Air and Soil Pollution, 1995,85: 1 075-1 081.
[10] Busenberg E, Clemency C. The dissolution of feldspars at 25℃ and 1 atm CO2 partial pressure[J]. Geochimica et Cosmochimica Acta, 1975,40: 41-46.
[11] Knauss K, Wolery T J. Muscovite dissolution kinetics as a function of pH and time at 70°[J]. Geochimica et Cosmochimica Acta, 1989,53: 1 493-1 502.
[12] Grandstaff D. The dissolution rate of foresteritic olivine from Hawaiian beach sand[A]. In: Coleman S, Dethier D, eds. Rates of Chemical Weathering of Rocks and Minerals[C]. Sweden: Academic Press, 1986. 41-59.
[13] Paces T. Rate constants of dissolution derived from the measurements of mass balances in catchments[J]. Geochimica et Cosmochimica Acta, 1983,47: 1 855-1 863.
[14] Velbel M. Geochemical mass balances and weathering rates in forested water-sheds in southern Blue Ridge[J]. American Journal of  Science, 1985,285: 904-930.
[15] Sverdrup H, Warfvinge P, Janicki A, et al. Mapping critical loads and steady state stream chemistry in the state of Maryland[J]. Environment Pollution, 1992,77: 195-203.
[16] Sverdrup H, Warfvinge P. Calculating field weathering rates using a mechanistic geochemical model PROFILE[J]. Applied Geochemistry, 1993, 18: 273-283.
[17] Chou L, Wollast R. Steady state kinetics and dissolution mechanisms of albite[J]. American Journal of Science, 1985,285: 963-993.
[18] Nugent M A, Brantley S L, Pantano C G, et al. The infuence of natural mineral coatings on feldspar weathering[J]. Nature, 1998,395: 588-590.
[19] Hodson M E, Langan S J, Wilson M J. A sensitivity analysis of the PROFILE model in relation to the calculation of soil weathering rate[J]. Applied Geochemistry, 1996,11: 835-844.
[20] Sverdrup H, Warfvinge P. Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model[J]. Water, Air and Soil Pollution,1988,38: 387-408.
[21] Duan Lei, Hao Jiming, Ye Xuemei, et al. Study on weathering rate of soil in China[J]. Acta Scientiae Circumstantiae, 2000,20(Suppl): 1-7. [段雷,郝吉明,叶雪梅,等.中国土壤风化速率[J]. 环境科学学报, 2000,20(增刊):1-7.]
[22] Land M, Ingri J, Ohlander B. Past and present weathering rates in northern Sweden[J]. Applied Geochemistry, 1999,14: 761-774.
[23] April R, Newton R, coles L T. Chemical weathering in two adirondack watersheds: Past and present-day rates[J]. Geological Society of America Bulletin, 1986,97: 1 232-1 238.
[24] Merritts D J, Chadwick O A, Hendrick, et al. The mass balance of soil evolution on late Quaternary marine terraces, norther California[J]. Geological Society of America Bulletin, 1992,104: 1 456-1 470.
[25] Bain D C, Mellor A, Robertson-Rintoul M S E. Variations in weathering processes and rates with time in a chronosequence of soils from Glen Feshie, Scotland[J]. Geoderma, 1993,57: 275-293.
[26] Watson E B, Harrison T M. Zircon saturation revisted: temperature and composition effects in a variety of crustal maga types[J]. Earth Planet Science Letters, 1983,64: 295-304.
[27] Bain D C, Duthie D M L, Thomson C M. Rates and processes of mineral weathering in soils developed on greywackes and shales in the southern uplands of Scotland [J]. Water, Air and Soil Pollution, 1995,85: 1 069-1 074.
[28] Brimhall G, Dietrich W E. Constructive mass balance re;ations between chemical composition, volume, density, porosity, and stain in metasomatic hydrochemical systems: results on weathering and pedogenisis[J]. Geochimica et Cosmochimica Acta, 1987,51: 567-587.
[29] Mazzorino M J, Heinrichs H, Folster H. Holocne versus accelerated actual proton consumption in German forest soils[A]. In: Ulrich B, Pankrath J, eds. Effects of Accumulation of air Pollutions in Forest Ecosystems[C]. German: Reidel Publishing, 1983. 113-123.
[30] Liu Anshi. Soils in Guangdong[M]. Beijing: Science Press, 1993. 54-62. [刘安世. 广东土壤[M]. 北京: 科学出版社, 1993. 54-62.]
[31] Li Qinbang. Soils in Sichuan[M]. Chengdu: Sichuan Science and Technalogy Press, 1995. 72-77. [李钦榜. 四川土壤[M]. 成都: 四川科学技术出版社, 1995. 72-77.]
[32] Bird M I, Chivas A R. Oxygen isotope dating of the Australian regolith[J]. Nature, 1988,331: 513-516.
[33] Vasconcelos P M, Becker T A, Renne P R ,et al. Age and duration of weathering by 40K-40Ar and 40Ar/39Ar analysis of potassium-manganese oxides[J]. Nature, 1992,258: 451-455.

[1] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[2] 黄来明, 邵明安, 贾小旭, 张甘霖. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1021-1031.
[3] 贾路路, 相龙伟, 汪汉胜. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响 *[J]. 地球科学进展, 2014, 29(7): 828-834.
[4] 支鹏遥,刘保华,华清峰,刘晨光,裴彦良,郑彦鹏,郝天珧. 渤海海底地震仪探测试验及初步成果[J]. 地球科学进展, 2012, 27(7): 769-777.
[5] 徐小波,屈春燕,单新建,马超,张桂芳,孟秀军. 基于PS-InSAR技术的断裂带地壳形变实验研究[J]. 地球科学进展, 2012, 27(4): 452-459.
[6] 李丽敏,刘祥文,谢战军.  大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285.
[7] 李春峰, 汪品先, Dieter Franke, 李家彪, Randell Stephenson, 许树坤,Peter Michael, 周祖翼,等. 南海张裂过程及其对晚中生代以来东南亚构造的启示-IODP建议书735-Full介绍[J]. 地球科学进展, 2009, 24(12): 1339-1351.
[8] 张新钰,季建清,韩宝福,陈建军,余绍立. 地表剥蚀、下地壳流变与造山作用研究进展[J]. 地球科学进展, 2006, 21(5): 521-531.
[9] 杨晓志,夏群科,于慧敏,郝艳涛. 大陆下地壳高电导率的起源:矿物中的结构水[J]. 地球科学进展, 2006, 21(1): 31-38.
[10] 王金荣;翟新伟;边少之;李双文;董宁芳;王廷印. 地壳早期演化的研究进展[J]. 地球科学进展, 2004, 19(4): 591-598.
[11] 孙和平,周江存. 中国地壳运动观测网络基准站重力场变化的海潮负荷信号改正问题[J]. 地球科学进展, 2002, 17(1): 39-43.
[12] 王景明,王春梅,刘科. 地裂缝及其灾害研究的新进展[J]. 地球科学进展, 2001, 16(3): 303-343.
[13] 陈增强,胡瑞华,刘立嵩. 中国地壳运动观测网络在地球科学研究中的应用前景[J]. 地球科学进展, 2000, 15(4): 421-425.
[14] 许厚泽,蒋福珍,张赤军. 我国动力大地测量学的进展[J]. 地球科学进展, 2000, 15(2): 127-133.
[15] 王静瑶,吴 云. 现代地壳运动与地震监测预报研究的现状和发展趋势[J]. 地球科学进展, 2000, 15(1): 84-89.
阅读次数
全文


摘要