地球科学进展 ›› 2001, Vol. 16 ›› Issue (2): 201 -208. doi: 10.11867/j.issn.1001-8166.2001.02.0201

综述与评述 上一篇    下一篇

一种新的火成岩——埃达克岩的研究综述
王强,许继锋,赵振华   
  1. 中国科学院广州地球化学研究所,广东 广州  510640
  • 收稿日期:2000-06-28 修回日期:2000-08-21 出版日期:2001-04-01
  • 通讯作者: 王强(1971-),男,湖北当阳人,博士后,主要从事岩浆岩岩石学和地球化学研究. E-mail:wqiang@gig.ac.cn
  • 基金资助:

    国家重点基础研究发展规划项目“大规模成矿作用及大型矿集区预测”(编号:G1999043202);国家攀登计划预选项目“与寻找超大型矿床有关的基础研究”(编号:95-预-25);国家博士后基金“华南绍兴—恩平富碱侵入岩带的初步研究”和广东省自然科学基金博士启动项目(编号:994588)联合资助.

THE SUMMARY AND COMMENT ON RESEARCH ON A NEW KIND OF IGNEOUS ROCK—ADAKITE

WANG Qiang, XU Ji-feng,ZHAO Zhen-hua   

  1. Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou  510640,China
  • Received:2000-06-28 Revised:2000-08-21 Online:2001-04-01 Published:2001-04-01

埃达克岩 (adakite)是一种中酸性富钠火成岩 (安山岩、英安岩、钠质流纹岩及相应的侵入岩 ),其突出的地球化学特征就是SiO2 ≥ 56% ,Al2O3≥ 1 5%,亏损重稀土元素 (HREE)与Y(如Yb≤1.9×10-6,Y≤1 8×1 0-6), 高Sr(大多数>400× 10-6、La/Yb(≥10.0 )与Sr/Y(>2 0.0~40.0 ) ,一般具有正铕异常(少数具有极弱负铕异常)。埃达克岩存在两种成因类型:一种由俯冲的年轻 (≤25~30 Ma)大洋板片熔融形成( 类埃达克岩) ;另一种由增厚地壳环境中的玄武质下地壳熔融形成 ( 类埃达克岩)。对两类埃达克岩的特征、形成机制、成矿作用、动力学意义以及我国埃达克岩的研究现状进行了评述,并指出了埃达克岩研究中所存在的问题。

Adakite is a kind of mediate and acid igneous Na rich rock (andesite, dacite, sodiumic rhyolite and homologus intrusive rock), with the stickup characteristics of SiO 2≥56%, Al2O3≥15%,depletion in HREE and Y(Yb≤1.9×10-6 ,Y≤18×10-6), high Sr(>400×10-6 ,rarely<400×10 -6 )、La/Yb(10.0) and Sr/Y(>20.0~40.0), as well as positive Sr anomaly but absent or positive negative Eu anomaly. There are two types of adakites with different petrogenesis: one type is formed by the melting of subducting young (≤25~30 Ma) slab (Ⅰ-type adakite), and the other type is formed by the melting of basaltic lower crust under thickened setting (Ⅱtype adakite). Ⅰ-type adakite has also these characteristics: sometimes associated with “high Nb” or “Nb enriched” basalt; usually reacting with the mantle during the adakitic magma uprising; closely related to high pressure, ultra pressure eclogite and shallow earthquakes; sometimes associated with Au、Ag、Cu、Mo hydrotherm and porphyry deposit. In addition, Ⅰ-type adakite occurs when the age of subducted slab is less than 25~30 Ma and the subducting slab reaches 70~80 km under the arc. The Mg#(Mg/(Mg+Fe)molar) of Ⅱtype adakite is generally less than 0.50. In the condition of aqua undersaturation and the setting of thickened(>40 km) lower crust, Ⅱtype adakite is apt to be formed by the melting of newly underplating basaltic lower crust. Two types of adakites are very significative to studying geodynamics, crust mantle interaction, and the growth and evolution of continent crust. We found the Ⅰ-type adakite in north Dabie and Qingling mountains and the Ⅱtype adakite in Shaxi region of Anhui province, and thought Shaxi porphyry Cu deposit could be related to Ⅱtype adakite.

中图分类号: 

[1]  Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662~665.
[2]  Kay R W. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust[J]. J Volcanol Geotherm Res, 1978,4: 117~132.
[3]  Gill J B. Orogenic Andesite and Plate Tectonics[M]. Berlin:Springer, 1981.
[4]  Defant M J, Richerson M, De Boer J Z,et al. Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada volcanic complex[J]. Panama J Petrol, 1991, 32: 1101~1 142.
[5]  Defant M J, Jackson T E, Drummond M S,et al. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview [ J ]. J Geol Soc (London), 1992, 149: 569~579.
[6]  Defant M J, Drummond M S. Mount St Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc[J]. Geology, 1993, 21: 547~550.
[7]  Drummond M S, Defant M J. A model for trondhjemitetonalite-dacite genesis and crustal growth via slab melting:Archaean to modern comparisons[J]. J Geophys Res, 1990,95: 21 503~21 521.
[8]  Morris P A. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwestern Japan[J]. Geology,1995, 23: 395~398.
[9]  Kay S M, Ramos V A, Marquez M. Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America[J].The J Geol, 1993, 101: 703~714.
[10]  Yogodzinski G M, Kelemen P B. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt[J]. Earth and Planetary Science Letters, 1998, 158: 53~65.
[11]  Yogodzinski G M, Kay R W, Volynets O N,et al. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge[J]. Geol Society Am Bull, 1995, 107: 505~519.
[12]  Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral volcanic zone[J]. Contrib Miner Petrol,1996, 123: 263~281.
[13]  Kepezhinskas P K, Defant M J, Drummond M S. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochim Cosmochim Acta, 1996, 60: 1 217~1 229.
[14]  Schiano P, Clocchiatti R, Shimizu N,et al. Hydrous, silicarich melts in the sub-arc mantle and their relationship with erupted arc lavas[J]. Nature, 1995, 377: 595~600.
[15]  Shinjo R. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system[J].Chemical Geology, 1999, 157: 69~88.
[16]  Martin H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 1999, 46: 411~429.
[17]  Sajona F G, Maury R C, Bellon H,et al. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines)[J]. J Petrology, 1996, 37: 693~726.
[18]  Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crustmantle recycing[J]. J Petrol, 1995, 36: 891~931.
[19]  Rapp R P, Shimizu N, Norman M D,et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 Gpa[J]. Chemical Geology,1999, 160: 335~356.
[20]  Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites[J]. Contrib Mineral Petrol, 1994, 117: 394~409.
[21]  Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust [J]. Nature,1993, 362: 144~146.
[22]  Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith,Peru[J]. J Petrology, 1996,37:1 491~1 521.
[23]  Muir R J, Weaver S D, Bradshaw J D,et al. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand:granitoid magmas formed by melting of mafic lithosphere[J].J Geol Soc Lond, 1995, 152: 689~701.
[24]  Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust[J]. Earth Planet Sci Lett, 1994,121: 227~244.
[25]  Peacock S M, Wang K. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan[J]. Sciences, 1999, 286:937~939.
[26]  Hollings P, Kerrich R. An Archean arc basalt-Nb-enriched basalt-adakite association: the 2.7 Ga confederation assemblage of the Birch-Uchi greenston belt,Superior Province[J].Contrions to Mineralogy and Petrology, 2000, 139: 208 ~226.
[27]  Wang Qiang, Xu Jifeng, Wang Jianxin,et al. The recognition of adakite-type gneisses in the North Dabie Mountains and the relationship between them and ultrahigh pressure metamorphism[J]. Chinese Science Bulletin,2000,46(10):017~1 024.[王强,许继锋,王建新,赵振华,邱家骧,王人镜,熊小林,桑隆康,彭练红.大别山adakite岩型灰色片麻岩确立及其与超高压变质作用的关系.科学通报,2000,46(10):1 017~1 024.]
[28]  The Geological Institute of Metallurgy Industry Ministry.Porphyry Copper Mine in China[M].Beijing: Science Publishing House,1984,144~179. [冶金工业部地质研究所.中国斑岩铜矿[M].北京:科学出版社. 1984.144~179.]
[29]  Gromet L P, Silver L. REE variations across the peninsular ranges batholith: Implications for batholithic petrogenisis and crustal growth in magmatic arcs[J]. Journal of Petrology,1987, 28:75~125.
[30]  Kay R W, Kay S M. Creation and destruction of lower continental crust[J]. Geologiche Rundschau, 1991, 80: 259 ~278.
[31]  Wang Yan, Zhang Qi, Qian Qing. The geochemical characteristics of adakite and its tectonic implications[J]. Geological Science, 2000,35(2):251~256. [王焰,张旗,钱青.埃达克岩(adakite)的地球化学特征及其构造意义[J].地质科学,2000,35(2):251~256.]
[32]  Van der Voo R, Spakman W, Bijwaard H. Mesozoic subducted slabs under Siberia[J]. Nature,1999,397:246~249.
[33]  Deng Jinfu, Zhao Guochun, Zhao Hailing,et al. Yanshanian Igneous petrotectonic assemblsge and orogenic-deep processes in East China[J].Geological Review, 2000,46(1):41~48.[邓晋福,赵国春,赵海玲,等.中国东部燕山期火成岩构造组合与造山——深部过程[J].地质论评, 2000,46(1):41~48.]
[34]  Zhou Xinmin, Li Wuxian. The petrogenesis of mesozoic igneous rocks in southeast China: coupled model between lithosphere subducting and basalt underplating[J]. Natural Science Progress, 2000,10(3):240~247.[周新民,李武显.中国东南部晚中生代火成岩成因:岩石圈消减和玄武岩底侵相结合的模式[J].自然科学进展,2000,10(3):240~247.]
[35]  Lo C H, Yui T F.40Ar/39Ar dating of high-pressure rocksing the Tananao basment complex,Taiwan[J]. J Geol Soc China,1996, 39(1):13~30.
[36]   Xu Jifeng, Wang Qiang, Yu Xueyuan. Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Moutains, central China: Evidence of partial melting of the subducted Paleo-Tethyan crust and its implication[J]. Geochemical Journal, 2000,34:359~377.
[37]  Wang Qiang, Zhao Zhenhua, Xiong Xiaolin,et al. the melting of underplating basaltic lower crust: the evidences from Na-rich quartz diorite-porphyry in Anhui proince[J]. Geochemistry,2000(submission).[王强,赵振华,熊小林,等.底侵玄武质下地壳的熔融:来自安徽沙溪富钠石英闪长玢岩的证据[J].地球化学,2001(待刊).]

[1] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[2] 李大鹏,陈岳龙,靳野. 板块俯冲带研究中的数值实验[J]. 地球科学进展, 2010, 25(6): 582-596.
[3] 李武显,李献华. 蛇绿岩中的花岗质岩石成因类型与构造意义[J]. 地球科学进展, 2003, 18(3): 392-397.
[4] 史斗,刘文汇,郑军卫. 深层气理论分析和深层气潜势研究[J]. 地球科学进展, 2003, 18(2): 236-244.
[5] 赵振华,刘秉光,李朝阳. 我国与寻找超大型矿床有关的基础研究进展[J]. 地球科学进展, 2001, 16(2): 184-188.
[6] 陈增强,胡瑞华,刘立嵩. 中国地壳运动观测网络在地球科学研究中的应用前景[J]. 地球科学进展, 2000, 15(4): 421-425.
[7] 朱介寿. 下地幔及核幔边界结构及地球动力学[J]. 地球科学进展, 2000, 15(2): 139-142.
[8] 孙和平,许厚泽,徐建桥,柳林涛. 重力场的潮汐变化观测及其研究[J]. 地球科学进展, 2000, 15(1): 53-57.
[9] 李晶莹,陶明信. 国际煤层气组成和成因研究[J]. 地球科学进展, 1998, 13(5): 467-473.
[10] 许厚泽,孙和平. 我国重力固体潮实验研究进展[J]. 地球科学进展, 1998, 13(5): 415-422.
[11] 郑永飞,李曙光,陈江峰. 化学地球动力学[J]. 地球科学进展, 1998, 13(2): 121-128.
[12] 周鼎武,张成立,刘颖宇. 大陆造山带基底岩块中的基性岩墙群研究——以南秦岭武当地块为例[J]. 地球科学进展, 1998, 13(2): 151-156.
[13] 王军芝,聂高众. 90年代国际岩石圈计划研究进展[J]. 地球科学进展, 1998, 13(1): 27-33.
[14] 李院生,卢焕章,陈晓枫,李兆麟. 流体作用在地球动力学演化过程中的意义[J]. 地球科学进展, 1997, 12(2): 138-143.
[15] 孙和平,许厚泽. 国际地球动力学合作项目的实施与展望[J]. 地球科学进展, 1997, 12(2): 152-157.
阅读次数
全文


摘要