地球科学进展 ›› 2018, Vol. 33 ›› Issue (5): 464 -472. doi: 10.11867/j.issn.1001-8166.2018.05.0464

综述与评述 上一篇    下一篇

荒漠地区大气—土壤的碳交换过程
法科宇 1, 2( ), 雷光春 1, 张宇清 2, 刘加彬 3   
  1. 1.北京林业大学 自然保护区学院, 北京 100083
    2.北京林业大学 水土保持学院宁夏盐池毛乌素沙地生态系统国家定位观测研究站, 北京 100083
    3.西北农林科技大学 资源环境学院, 陕西 杨凌 712100
  • 收稿日期:2018-03-13 修回日期:2018-05-15 出版日期:2018-05-20
  • 基金资助:
    *中国博士后科学基金项目“沙地土壤次生无机碳的运移过程”(编号:2016M600938);国家自然科学基金项目“半干旱区沙地土壤固定大气二氧化碳的微生物途径”(编号:31670709)资助.

Carbon Exchange Process Between Atmosphere and Soil in Desert Soils

Keyu Fa 1, 2( ), Guangchun Lei 1, Yuqing Zhang 2, Jiabin Liu 3   

  1. 1.School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
    2.Yanchi Ecology Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    3.College of Natural Resources and Environment, Northwest A & F University, Yangling Shaanxi 712100,China;
  • Received:2018-03-13 Revised:2018-05-15 Online:2018-05-20 Published:2018-06-13
  • About author:

    First author:Fa Keyu (1987-), male, Benxi City, Liaoning Province,Post Doctor. Research areas include soil carbon processes in arid and semi-arid regions. E-mail:fkysparrow@163.com

  • Supported by:
    Project supported by the Chinese Postdoctoral Science Foundation “Migration process of pedogenic inorganic carbon in sandy soil” (No.2016M600938);The National Natural Science Foundation of China “Microbial pathways of atmospheric CO 2 fixation in soils in a semi-arid desert” (No.31670709).

由于净初级生产力较低,且自然扰动强烈,荒漠生态系统往往被认为是一巨大碳源。然而,近年来世界范围内的研究发现,荒漠地区的土壤能够吸收大量大气CO2,但该过程因为不能从机理上得到充分地解释而饱受争议。通过深入讨论该反常的碳过程及其可能的驱动机制,认为荒漠土壤吸收大气CO2现象是客观存在的,热力机制、地表湍流和压力梯度改变驱动气体运动机制可能是该过程发生的重要驱动机制。但就目前而言,因无直接证据表明在自然状态下,荒漠地区土壤吸收的碳会普遍且快速运移至地下水体中或矿化封存于土壤中,所以尚不能断言荒漠地区土壤是一个碳汇。未来该领域的研究应关注荒漠地区土壤液相碳的运移问题,尤其关注其气相转化和矿化过程。

Because the net primary productivity is low and disturbance effect are strong, desert ecosystems have been proposed conventionally as a carbon source. However, studies worldwide in recent years have reported that desert soils can absorb atmospheric CO2, and the absorbed carbon may be conserved in soils or aquifers. As the carbon uptake is counterintuitive and the mechanisms of this process are elusive, the authenticity of this process is still grossly controversial. In this paper, we deeply discussed the authenticity of the anomalous carbon absorption and its possible driving mechanisms, and conclude that the counterintuitive process is authentic. The thermal mechanism, surficial turbulence and pressure gradients variations driving CO2 migration may be the important driving mechanisms. However, heretofore, no direct evidence can be provided for the speculation that the carbon absorbed by desert soils can commonly and rapidly transport into underground water or mineralize and sequestrate in soil. As a result, the role of carbon sink of desert soils remains veiled. It was suggested that future researches should focus on the transportation and emphatically focus on the gaseous transformation and mineralization of the liquid phase carbon.

中图分类号: 

图1 土壤非生物途径CO 2通量驱动机制概念图
(a)出通量驱动机制;(b)入通量驱动机制;虚线框表示贡献可能较小,实线框表示贡献较大;(a)中黑框表示出通量CO 2源发生机制
Fig.1 Overview of the mechanisms of the processes of abiotic soil CO 2 flux
(a)The mechanisms of the abiotic soil CO 2 efflux; (b)The mechanisms of the abiotic soil CO 2 influx; The dashed frames represent that the mechanisms may contribute little, and the solid frames indicate inversely; The black frames in (a) represent the CO 2 sources of soil CO 2 efflux
图1 土壤非生物途径CO 2通量驱动机制概念图
(a)出通量驱动机制;(b)入通量驱动机制;虚线框表示贡献可能较小,实线框表示贡献较大;(a)中黑框表示出通量CO 2源发生机制
Fig.1 Overview of the mechanisms of the processes of abiotic soil CO 2 flux
(a)The mechanisms of the abiotic soil CO 2 efflux; (b)The mechanisms of the abiotic soil CO 2 influx; The dashed frames represent that the mechanisms may contribute little, and the solid frames indicate inversely; The black frames in (a) represent the CO 2 sources of soil CO 2 efflux
图2 毛乌素沙地土壤碳酸盐富集区
(a)毛乌素沙地9处土壤剖面;其中黄色虚线框内为碳酸盐结晶体,红色实线框内为碳酸盐结核体;(b)碳酸盐结核体的尺寸
Fig.2 Carbonate enrichment in soil in the Mu Us Desert
(a)Nine randomly selected soil profiles in the Mu Us Desert, yellow dotted boxes and red solid boxes in (a) are the carbonate crystal and the carbonate nodules respectively; (b) Sizes of the carbonate nodules found in soil profiles
图2 毛乌素沙地土壤碳酸盐富集区
(a)毛乌素沙地9处土壤剖面;其中黄色虚线框内为碳酸盐结晶体,红色实线框内为碳酸盐结核体;(b)碳酸盐结核体的尺寸
Fig.2 Carbonate enrichment in soil in the Mu Us Desert
(a)Nine randomly selected soil profiles in the Mu Us Desert, yellow dotted boxes and red solid boxes in (a) are the carbonate crystal and the carbonate nodules respectively; (b) Sizes of the carbonate nodules found in soil profiles
[1] Schindler D W.Carbon cycling:The mysterious missing sink[J]. Nature, 1999, 398(6 723):105-106.
doi: 10.1038/18111     URL    
[2] Joos F.Imbalance in the budget[J].Nature, 1994, 370(6 486): 18l-182.
doi: 10.1038/370018a0     URL    
[3] Bruce J P.Carbon sequestration in soils[J]. Science, 1999, 54(1): 382-389.
[4] Fang Jingyun, Guo Zhaodi.Looking for missing carbon sinks from terrestrial ecosystems[J]. Chinese Journal of Nature, 2007, 29(1): 1-6.
[方精云, 郭兆迪. 寻找失去的陆地碳汇[J]. 自然杂志, 2007, 29(1): 1-6.]
doi: 10.3969/j.issn.0253-9608.2007.01.001     URL    
[5] Liu Zaihua, Wolfgang Dreybrodt, Wang Haijing.A possibly important CO2 sink produced by the global water cycle[J]. Chinese Science Bulletin, 2007, 52(20): 2 418-2 422.
[刘再华, Wolfgang Dreybrodt, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J]. 科学通报, 2007, 52(20): 2 418-2 422.]
doi: 10.3321/j.issn:0023-074x.2007.20.013     URL    
[6] Fang Jingyun, Zhu Jiangling, Wang Shaopeng, et al.Global warming, human-induced carbon emissions, and their uncertainties[J]. Science in China (Series D), 2011, 41(10): 1 385-1 395.
[方精云, 朱江玲, 王少鹏, 等. 全球变暖、碳排放及不确定性[J]. 中国科学: D辑, 2011, 41(10): 1 385-1 395.]
[7] Ahlstrom A, Raupach M R, Schurgers G, et al.The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink[J]. Science, 2015, 348(6 237): 895-899.
doi: 10.1126/science.aaa1668     URL    
[8] Schlesinger W H.An evaluation of abiotic carbon sinks in deserts[J]. Global Change Biology, 2017, 23(1): 25-27.
doi: 10.1111/gcb.13336     URL     pmid: 27135436
[9] Xi F M, Davis S J, Ciais P, et al.Substantial global carbon uptake by cement carbonation[J]. Nature Geoscience, 2016, 9: 880-883.DOI:10.1038/ngeo2840.
doi: 10.1038/ngeo2840     URL    
[10] Jiang Zhongcheng, Qin Xiaoqun, Cao Jianhua, et al.Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to “Discussion on article ‘Calculation of atmospheric CO2 sin formed in karst processes of karst divided regions in China’”[J]. Carsologica Sinica, 2013, 32(1):1-6. DOI: 1001-4810(2013)01-0001-06.
[蒋忠诚, 覃小群, 曹建华, 等. 论岩溶作用对全球碳循环的意义与碳汇效应——兼对《对<中国岩溶作用产生的大气碳汇分区估算>一文的商榷》的答复[J]. 中国岩溶, 2013, 32(1):1-6. DOI: 1001-4810(2013)01-0001-06.]
doi: 10.3969/j.issn.1001-4810.2013.01.001     URL    
[11] Delgado-Baquerizo M, Maestre F T, Gallardo A, et al.Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502(7 473): 672-676.
doi: 10.1038/nature12670     URL    
[12] Raich J W, Potter C S.Global patterns of carbon dioxide emissions from soils[J].Global Biogeochemical Cycles, 1995, 9(1): 23-36.
doi: 10.1029/94GB02723     URL    
[13] Jasoni R L, Smith S D, Arnone J A.Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2[J]. Global Change Biology, 2005, 11(5): 749-756.
doi: 10.1111/j.1365-2486.2005.00948.x     URL    
[14] Wohlfahrt G, Fenstermaker L F, Arnone J A.Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J]. Global Change Biology, 2008, 14(7): 1 475-1 487.
doi: 10.1111/j.1365-2486.2008.01593.x     URL    
[15] Yates E L, Detweiler A M, Iraci L T, et al.Assessing the role of alkaline soils on the carbon cycle at a playa site[J]. Environmental Earth Sciences, 2013, 70(3): 1 047-1 056.
doi: 10.1007/s12665-012-2194-x     URL    
[16] Hamerlynck E P, Scott R L, Snchez-Cañete E P, et al. Nocturnal soil CO2 uptake and its relationship to subsurface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland[J]. Journal of Geophysical Research, 2013, 118(4): 1 593-1 603.
doi: 10.1002/2013JG002495     URL    
[17] Xie J X, Li Y, Zhai C X, et al.CO2 absorption by alkaline soil and its implication to the global carbon cycle[J]. Environmental Geology, 2009, 56(5): 953-961.
doi: 10.1007/s00254-008-1197-0     URL    
[18] Ma J, Wang Z Y, Stevenson B A,et al.An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soil[J]. Scientific Reports, 2013, 3(2 025). DOI: 10.1038/srep02025.
doi: 10.1038/srep02025     URL     pmid: 23778238
[19] Li Y, Wang Y G, Houghton R A, et al.Hidden carbon sink beneath desert[J]. Geophysical Research Letters, 2015, 42: 5 880-5 887.DOI:10.1002/2015GL064222.
doi: 10.1002/2015GL064222     URL    
[20] Fa K Y, Liu J B, Zhang Y Q,et al.CO2 absorption of sandy soil induced by rainfall pulses in a desert ecosystem[J]. Hydrological Processes, 2015, 29(8): 2 043-2 051.
doi: 10.1002/hyp.10350     URL    
[21] Liu J B, Feng W, Zhang Y Q, et al.Abiotic CO2 exchange between soil and atmosphere and its response to temperature[J]. Environmental Earth Sciences, 2015, 73(5): 2 463-2 471.
doi: 10.1007/s12665-014-3595-9     URL    
[22] Ball B A, Virginia R A, Barretta J E, et al.Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils[J]. Soil Biology and Biochemistry, 2009, 41(7): 1 510-1 517.
doi: 10.1016/j.soilbio.2009.04.011     URL    
[23] Schlesinger W H, Belnap J, Mariong G.On carbon sequestration in desert ecosystems[J]. Global Change Biology, 2009, 15(6): 1 488-1 490.
doi: 10.1111/gcb.2009.15.issue-6     URL    
[24] Stone R.Ecosystems: Have desert researchers discovered a hidden loop in the carbon cycle?[J]. Science, 2008, 320(5 882): 1 409-1 410.
doi: 10.1126/science.320.5882.1409     URL     pmid: 18556524
[25] Poulter B, Frank D, Ciais P,et al.Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle[J]. Nature, 2014, 509(7 502): 600-603.
doi: 10.1038/nature13376     URL     pmid: 24847888
[26] Emmerich W E.Carbon dioxide fluxes in a semiarid environment with high carbonate soils[J]. Agricultural and Forest Meteorology, 2003, 116(1): 91-102.
doi: 10.1016/S0168-1923(02)00231-9     URL    
[27] Li Yan, Wang Yugang, Tang Lisong.The effort to reactivate the inorganic carbon in soil[J]. Acta Pedologica Sinica, 2016, 53(4): 845-849.
[李彦, 王玉刚, 唐立松. 重新被“激活”的土壤无机碳研究[J]. 土壤学报, 2016, 53(4): 845-849.]
doi: 10.11766/trxb201603080100     URL    
[28] Fa Keyu, Zhang Yuqing, Liu Jiabin, et al.Responses of abiotic soil CO2 flux to soil temperature in a semi-arid region[J]. Journal of Desert Research, 2015, 35(6): 1 628-1 635.
[法科宇, 张宇清, 刘加彬, 等. 土壤非生物CO2通量对土壤温度的相应[J]. 中国沙漠, 2015, 35(6): 1 628-1 635.]
doi: 10.7522/j.issn.1000-694X.2015.00059     URL    
[29] Chen X, Wang W F, Luo G P, et al.Can soil respiration estimate neglect the contribution of abiotic exchange?[J]. Journal of Arid Land, 2014, 6(2): 129-135.
doi: 10.1007/s40333-013-0244-1     URL    
[30] Liu J B, Fa K Y, Zhang Y Q, et al.Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 2015, 42(14): 5 779-5 785.
doi: 10.1002/2015GL064689     URL    
[31] Fa Keyu.Soil CO2 Flux and Its Response to Environmental Factors in Mu Us Desert[D]. Beijing: Beijing Forestry University, 2015.
[法科宇. 毛乌素沙地土壤CO2通量及其环境影响因素[D]. 北京: 北京林业大学, 2015.]
[32] Austin A T, Vivanco L.Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J].Nature, 2006, 442(7 102): 555-558.DOI:10.1038/nature05038.
doi: 10.1038/nature05038     URL     pmid: 16885982
[33] Roland M, Serrano-Ortiz P, Kowalski A S, et al.Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry[J]. Biogeosciences, 2013, 10(7): 1 207-1 227.
doi: 10.5194/bg-10-5009-2013     URL    
[34] Etiope G, Feyzullayev A, Milkov A V, et al.Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in ter-restrial mud volcanoes[J]. Marine and Petroleum Geology, 2009, 26(9): 1 692-1 703.
doi: 10.1016/j.marpetgeo.2008.12.002     URL    
[35] Rey A.Mind the gap: Non-biological processes contributing to soil CO2 efflux[J]. Global Change Biology, 2015, 21(5): 1 752-1 761.
doi: 10.1111/gcb.12821     URL     pmid: 25471988
[36] Parsons A N, Barrett J E, Wall D H, et al.Soil carbon dioxide flux in Antarctic Dry Valley ecosystems[J]. Ecosystems, 2004, 7(3): 286-295.
doi: 10.1007/s10021-003-0132-1     URL    
[37] Soper F M, McCalley C K, Sparks K, et al. Soil carbon dioxide emissions from the Mojave desert: Isotopic evidence for a carbonate source[J]. Geophysical Research Letters, 2016, 44. DOI: 10.1002/2016GL071198.
[38] Fa K Y, Zhang Y Q,Wu Bin, et al.Patterns and possible mechanisms of soil CO2 uptake in sandy soil[J]. Science of the Total Environment, 2016, 544: 587-594.
doi: 10.1016/j.scitotenv.2015.11.163     URL     pmid: 26674687
[39] Huang Laiming, Shao Ming’an, Jia Xiaoxu, et al.A review of the methods and controls of soil weathering rates[J]. Advances in Earth Science, 2016, 31(10): 1 021-1 031.
[黄来明, 邵明安, 贾小旭, 等. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1 021-1 031.]
doi: 10.11867/j.issn.1001-8166.2016.10.1021     URL    
[40] Leite F L, Riul A, Herrmann P S P. Mapping of adhesion forces on soil minerals in air and water by atomic force spectroscopy (AFS)[J]. Journal of Adhesion Science and Technology, 2003, 17(16): 2 141-2 156.
doi: 10.1163/156856103772150751     URL    
[41] Berner R A.Weathering, plants and the long-term carbon cycle[J].Geochimica et Cosmochimica Acta, 1992, 56: 3 225-3 231.
doi: 10.1016/0016-7037(92)90300-8     URL    
[42] Kaufmann G, Dreybrodt W.Calcite dissolution kinetics in the system CaCO3-H2O-CO2 at high undersaturation[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1 398-1 410.
doi: 10.1016/j.gca.2006.10.024     URL    
[43] Hilley G E, Chamberlain C P, Moon S,et al.Competition between erosion and reaction kinetics in controlling silicate-weathering rates[J]. Earth and Planetary Science Letters, 2010, 293(1/2): 191-199.
doi: 10.1016/j.epsl.2010.01.008     URL    
[44] Matter J M, Stute M, Snæbjörnsdottir Sandra Ó,et al.Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science, 2016, 352(6 291): 1 312-1 314.
doi: 10.1126/science.aad8132     URL     pmid: 27284192
[45] Fa K Y, Liu Z, Zhang Y Q, et al.Abiotic carbonate dissolution traps carbon in a semiarid desert[J]. Scientific Reports, 2016, 6: 23 570. DOI: 10.1038/srep23570.
doi: 10.1038/srep23570     URL     pmid: 4810371
[46] Zhao Wenzhi, Zhou Hong, Liu Hu.Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics[J]. Advances in Earth Science, 2017, 32(9): 908-917.
[赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-917.]
doi: 10.11867/j.issn.1001-8166.2017.09.0908     URL    
[47] Yang Wenbin, Tang Jinnian, Liang Hairong, et al.Deep soil water infiltration and its dynamic variation in the shifting sandy land of typical deserts in China[J]. Science in China (Series D), 2014, 57(8): 1 816-1 824. DOI: 10.1007/s11430-014-4882-8.
[杨文斌, 唐进年, 梁海荣, 等. 我国典型沙漠(地)流动风沙土的深层渗漏量及动态变化[J]. 中国科学: D辑, 2014, 44(9): 2 052-2 061.]
[48] Huo Aidi, Zhang Guangjun, Zhao Jun, et al.Study on remote sensing monitoring model of groundwater level in Aeolian desertification areas—A case study of Mu Us Aeolian desertification areas, China[J]. Agricultural Research in the Arid Areas, 2010, 28(6): 196-200.
[霍艾迪, 张广军, 赵君, 等. 基于MODIS数据的沙漠化地区地下水位遥感监测模型的建立——以毛乌素沙地为例[J]. 干旱地区农业研究, 2010, 28(6): 196-200.]
[49] Cheng Donghui, Wang Wenke, Hou Guangcai, et al.Relationship between vegetation and groundwater in Mu Us Desert[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1): 184-189.
[程东会, 王文科, 侯光才, 等.毛乌素沙地植被与地下水关系[J]. 吉林大学学报:地球科学版, 2012, 42(1): 184-189.]
[50] Marion G M, Schlesinger W H, Fonteyn P J.Spatial variability of CaCO3 solubility in a Chihuahuan desert soil[J]. Arid Soil Research and Rehabilitation, 1990, 4(3): 181-191.
doi: 10.1080/15324989009381247     URL    
[51] Kohl L, Cumming E, Cox A, et al.Exploring the metabolic potential of microbial communities in ultra-basic, reducing springs at the Cedars, CA, US: Experimental evidence of microbial methanogenesis and heterotrophic acetogenesis[J]. Journal of Geophysical ResearchBiogeosciences, 2016, 121(4). DOI: 10.1002/2015JG003233.
[52] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: The Lost City hydrothermal field[J]. Science, 2005, 307(5 714): 1 428-1 434.
doi: 10.1126/science.1102556     URL    
[53] Schrenk M O, Brazelton W J, Lang S Q.Serpentinization, carbon, and deep life[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 575-606.
doi: 10.2138/rmg.2013.75.18     URL    
[54] Zamanian K, Pustovoytov K, Kuzyakov Y.Pedogenic carbonates: Forms and formation processes[J]. Earth-Science Reviews, 2016, 157:1-17.
doi: 10.1016/j.earscirev.2016.03.003     URL    
[55] Liu Zaihua.Is pedogenic carbonate an important atmospheric CO2 sink?[J]. Chinese Science Bulletin, 2011, 56(26): 2 209-2 211.
[刘再华. 土壤碳酸盐是一个重要的大气CO2汇吗?[J]. 科学通报, 2011, 56(26): 2 209-2 211.]
[56] McGrail B P, Schaef H T, Spane F A,et al. Field validation of supercritical CO2 reactivity with basalts[J]. Environmental Science and Technology Letters, 2017, 4(1): 6-10.
doi: 10.1021/acs.estlett.6b00387     URL    
[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016, 31(3): 277-285.
[3] 刘纪远,邵全琴, 延晓冬, 樊江文, 邓祥征, 战金艳, 高学杰, 黄麟, 徐新良, 胡云峰, 王军邦, 匡文慧. 土地利用变化对全球气候影响的研究进展与方法初探[J]. 地球科学进展, 2011, 26(10): 1015-1022.
[4] 邵景安,李阳兵,魏朝富,谢德体. 区域土地利用变化驱动力研究前景展望[J]. 地球科学进展, 2007, 22(8): 798-809.
[5] 于革. 早新生代温室气候及冰期气候转型的模拟研究[J]. 地球科学进展, 2007, 22(4): 369-375.
[6] 宋治清;王仰麟. 城市景观格局动态及其规划的生态学探讨[J]. 地球科学进展, 2005, 20(8): 840-848.
[7] 高洪林,穆治国,马配学. 古气候变化的周期性与驱动机制研究的回顾[J]. 地球科学进展, 2000, 15(2): 222-227.
[8] 方文东,方国洪. 南海南部海洋环流研究的新进展[J]. 地球科学进展, 1998, 13(2): 166-172.
阅读次数
全文


摘要