地球科学进展 ›› 2022, Vol. 37 ›› Issue (9): 963 -978. doi: 10.11867/j.issn.1001-8166.2022.059

全球变化研究 上一篇    下一篇

大西洋多年代际变化的研究进展
秦旻华 1 , 2( ), 戴爱国 3, 张人禾 1   
  1. 1.复旦大学 大气与海洋科学系/大气科学研究院,上海 200438
    2.南京信息工程大学 气象灾害 教育部重点实验室/气象灾害预报预警与评估协同创新中心,江苏 南京 210044
    3.纽约州立大学奥尔巴尼分校 大气与环境科学系,纽约 奥尔巴尼 12222
  • 收稿日期:2022-06-30 修回日期:2022-08-02 出版日期:2022-09-10
  • 基金资助:
    国家自然科学基金重大项目“北极海—冰—气系统对冬季欧亚大陆极端天气、气候事件的影响及机理”(41790472);博士后创新人才支持计划(BX20220078)

A Review of the Atlantic Multidecadal Variability

Minhua QIN 1 , 2( ), Aiguo DAI 3, Renhe ZHANG 1   

  1. 1.Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
    2.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
    3.Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany New York 12222, USA
  • Received:2022-06-30 Revised:2022-08-02 Online:2022-09-10 Published:2022-09-28
  • About author:QIN Minhua (1993-), female, Qidong City, Jiangsu Province, Postdoctor. Research area includes decadal to multidecadal variability. E-mail: qinminhua@gmail.com
  • Supported by:
    the National Natural Science Foundation of China “Influence of Arctic sea-ice-air system on extreme weather and climate events during winter in Eurasia”(41790472);The China Postdoctoral Science Foundation(BX20220078)

大西洋多年代际变化或称大西洋多年代际变率,是指发生在北大西洋区域海表温度周期性冷暖的变化,其周期为60~80年。虽然大西洋多年代际变化对全球和区域气候的影响十分显著,但是目前有关大西洋多年代际变化的形成机制一直是科学界关注的焦点,包括海洋内部动力过程、大气随机扰动以及人为和自然强迫均被证实会对大西洋多年代际变化有重要贡献。因此,更加全面地认识大西洋多年代际变化,对于理解全球气候变化的原因以及年代际气候预测都有重要的科学意义。研究回顾了有关大西洋多年代际变化的定义和主要特征、形成机制和原因,以及对全球和区域气候的影响等;然后讨论了大西洋多年代际变化的相关研究要点和存在问题。

The Atlantic Multidecadal Variability (AMV) refers to multidecadal (60~80 year) quasi‐oscillation in North Atlantic sea surface temperatures. The AMV has significant impacts on global and regional climate. However, the fundamental physical mechanisms and processes underlying the AMV remain a hot research topic. Internal ocean dynamics, atmospheric stochastic forcing, and external forcings of either anthropogenic or natural origins all have contributed to the AMV. Improved knowledge of the AMV is of great scientific importance for understanding the causes of global climate change as well as for decadal climate predictions. This paper reviews the definition and main characteristics of the AMV, its underlying mechanisms and climate impacts. This study also discusses the key topics and outstanding issues in AMV research.

中图分类号: 

1 Bindoff N L, Cheung W W L, Kairo J G, et al. Changing ocean, marine ecosystems, and dependent communities[M]// PÖRTNER H O, ROBERTS D C, MASSON-DELMOTTE V, et al. IPCC special report on the ocean and cryosphere in a changing climate. 2019.
2 DESER C, ALEXANDER M A, XIE S P, et al. Sea surface temperature variability: patterns and mechanisms[J]. Annual Review of Marine Science, 2010, 2: 115-143.
3 ZHANG R, SUTTON R, DANABASOGLU G, et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts[J]. Reviews of Geophysics, 2019, 57(2): 316-675.
4 KOSAKA Y, XIE S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501(7 467): 403-407.
5 DAI A G, FYFE J C, XIE S P, et al. Decadal modulation of global surface temperature by internal climate variability[J]. Nature Climate Change, 2015, 5(6): 555-559.
6 MEDHAUG I, STOLPE M B, FISCHER E M, et al. Reconciling controversies about the ‘global warming hiatus’[J]. Nature, 2017, 545(7 652): 41-47.
7 KUSHNIR Y. Interdecadal variations in north Atlantic Sea surface temperature and associated atmospheric conditions[J]. Journal of Climate, 1994, 7(1): 141-157.
8 SCHLESINGER M E, RAMANKUTTY N. An oscillation in the global climate system of period 65-70 years[J]. Nature, 1994, 367(6 465): 723-726.
9 KERR R A. A north Atlantic climate pacemaker for the centuries[J]. Science, 2000, 288(5 473): 1 984-1 985.
10 LI Shuanglin, WANG Yanming, GAO Yongqi. A review of the researches on the Atlantic Multidecadal Oscillation(AMO) and its climate influence[J]. Transactions of Atmospheric Sciences, 2009, 32(3): 458-465.
李双林, 王彦明, 郜永祺. 北大西洋年代际振荡(AMO)气候影响的研究评述[J]. 大气科学学报, 2009, 32(3): 458-465.
11 CHYLEK P, KLETT J D, LESINS G, et al. The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate[J]. Geophysical Research Letters, 2014, 41(5): 1 689-1 697.
12 STEINMAN B A, MANN M E, MILLER S K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures [J]. Science, 2015, 347(6 225): 988-991.
13 CLEMENT A, BELLOMO K, MURPHY L N, et al. The Atlantic Multidecadal Oscillation without a role for ocean circulation[J]. Science, 2015, 350(6 258): 320-324.
14 OTTERÅ O H, BENTSEN M, DRANGE H, et al. External forcing as a metronome for Atlantic multidecadal variability[J]. Nature Geoscience, 2010, 3(10): 688-694.
15 BOOTH B B B, DUNSTONE N J, HALLORAN P R, et al. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability[J]. Nature, 2012, 484(7 393): 228-232.
16 VECCHI G A, DELWORTH T L, BOOTH B. Origins of Atlantic decadal swings[J]. Nature, 2017, 548(7 667): 284-285.
17 SUTTON R T, MCCARTHY G D, ROBSON J, et al. Atlantic multidecadal variability and the U.K. ACSIS program[J]. Bulletin of the American Meteorological Society, 2018, 99(2): 415-425.
18 MANN M E, STEINMAN B A, BROUILLETTE D J, et al. Multidecadal climate oscillations during the past millennium driven by volcanic forcing[J]. Science, 2021, 371(6 533): 1 014-1 019.
19 BJERKNES J. Atlantic air-sea interaction[J]. Advances in Geophysics, 1964, 10: 1-82.
20 DELWORTH T L, MANN M E. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dynamics, 2000, 16(9): 661-676.
21 GRAY S T, GRAUMLICH L J, BETANCOURT J L, et al. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D.[J]. Geophysical Research Letters, 2004, 31(12). DOI: 10.1029/2004GL019932 .
22 WANG J L, YANG B, LJUNGQVIST F C, et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1, 200 years[J]. Nature Geoscience, 2017, 10(7): 512-517.
23 SINGH H K A, HAKIM G J, TARDIF R, et al. Insights into Atlantic multidecadal variability using the Last Millennium Reanalysis framework[J]. Climate of the Past, 2018, 14(2): 157-174.
24 TRENBERTH K E, SHEA D J. Atlantic hurricanes and natural variability in 2005[J]. Geophysical Research Letters, 2006, 33(12): L12704.
25 QIN M H, DAI A G, HUA W J. Quantifying contributions of internal variability and external forcing to Atlantic multidecadal variability since 1870[J]. Geophysical Research Letters, 2020, 47(22). DOI: e2020GL089504 .
26 SUTTON R T, HODSON D L R. Atlantic Ocean forcing of North American and European summer climate[J]. Science, 2005, 309(5 731): 115-118.
27 ENFIELD D B, MESTAS-NUÑEZ A M, TRIMBLE P J. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US[J]. Geophysical Research Letters, 2001, 28(10): 2 077-2 080.
28 SUTTON R T, DONG B W. Atlantic Ocean influence on a shift in European climate in the 1990s[J]. Nature Geoscience, 2012, 5(11): 788-792.
29 TING M F, KUSHNIR Y, SEAGER R, et al. Forced and internal twentieth-century SST trends in the North Atlantic[J]. Journal of Climate, 2009, 22(6): 1 469-1 481.
30 MOHINO E, JANICOT S, BADER J. Sahel rainfall and decadal to multi-decadal sea surface temperature variability[J]. Climate Dynamics, 2011, 37(3): 419-440.
31 FRANKCOMBE L M, ENGLAND M H, KAJTAR J B, et al. On the choice of ensemble mean for estimating the forced signal in the presence of internal variability[J]. Journal of Climate, 2018, 31(14): 5 681-5 693.
32 FRANKCOMBE L M, ENGLAND M H, MANN M E, et al. Separating internal variability from the externally forced climate response[J]. Journal of Climate, 2015, 28(20): 8 184-8 202.
33 QIN M H, DAI A G, HUA W J. Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920[J]. Science Advances, 2020, 6(29): eabb0425.
34 BOOTH B B. Why the Pacific is cool[J]. Science, 2015, 347(6 225): 952.
35 DELWORTH T, MANABE S, STOUFFER R J. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model[J]. Journal of Climate, 1993, 6(11): 1 993-2 011.
36 KNIGHT J R. A signature of persistent natural thermohaline circulation cycles in observed climate[J]. Geophysical Research Letters, 2005, 32(20): L20708.
37 ZHANG R, SUTTON R, DANABASOGLU G, et al. Comment on The Atlantic Multidecadal Oscillation without a role for ocean circulation[J]. Science, 2016, 352(6 293): 1527.
38 THOMAS M D, FEDOROV A V. Mechanisms and impacts of a partial AMOC recovery under enhanced freshwater forcing[J]. Geophysical Research Letters, 2019, 46(6): 3 308-3 316.
39 DELWORTH T L, GREATBATCH R J. Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing[J]. Journal of Climate, 2000, 13(9): 1 481-1 495.
40 JUNGCLAUS J H, HAAK H, LATIF M, et al. Arctic-north Atlantic interactions and multidecadal variability of the meridional overturning circulation[J]. Journal of Climate, 2005, 18(19): 4 013-4 031.
41 BA J, KEENLYSIDE N S, PARK W, et al. A mechanism for Atlantic multidecadal variability in the Kiel Climate Model[J]. Climate Dynamics, 2013, 41(7): 2 133-2 144.
42 GONG Zhanqiu, SUN Cheng, LI Jianping, et al. The application of causality analysis based on the theory of information flow in distinguishing the Atlantic multi-decadal oscillation driving mechanism[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1 081-1 094.
宫湛秋, 孙诚, 李建平, 等. 基于信息流理论的因果分析在辨析大西洋多年代际振荡物理机制中的应用[J]. 大气科学, 2019, 43(5): 1 081-1 094.
43 ZHANG J T, ZHANG R. On the evolution of Atlantic meridional overturning circulation fingerprint and implications for decadal predictability in the North Atlantic[J]. Geophysical Research Letters, 2015, 42(13): 5 419-5 426.
44 OELSMANN J, BORCHERT L, HAND R, et al. Linking ocean forcing and atmospheric interactions to Atlantic multidecadal variability in MPI-ESM1.2[J]. Geophysical Research Letters, 2020, 47(10). DOI: 10.1029/2020GL087259 .
45 COLLINS M, SINHA B. Predictability of decadal variations in the thermohaline circulation and climate[J]. Geophysical Research Letters, 2003, 30(6). DOI: 10.1029/2002GL016504 .
46 ZHANG R. On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability: persistence and coherence of SST and SSS[J]. Geophysical Research Letters, 2017, 44(15). DOI: 10.1002/2017GL074342 .
47 MEDHAUG I, FUREVIK T. North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation[J]. Ocean Science, 2011, 7(3): 389-404.
48 TANDON N F, KUSHNER P J. Does external forcing interfere with the AMOC’s influence on north Atlantic Sea surface temperature?[J]. Journal of Climate, 2015, 28(16): 6 309-6 323.
49 SUN C, ZHANG J, LI X, et al. Atlantic Meridional Overturning Circulation reconstructions and instrumentally observed multidecadal climate variability: a comparison of indicators[J]. International Journal of Climatology, 2021, 41(1): 763-778.
50 CLEMENT A, CANE M A, MURPHY L N, et al. Response to comment on the atlantic multidecadal oscillation without a role for ocean circulation[J]. Science, 2016, 352(6 293): 1527.
51 CANE M A, CLEMENT A C, MURPHY L N, et al. Low-pass filtering, heat flux, and Atlantic multidecadal variability[J]. Journal of Climate, 2017, 30(18): 7 529-7 553.
52 O'REILLY C H, HUBER M, WOOLLINGS T, et al. The signature of low‐frequency oceanic forcing in the Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 2016, 43(6): 2 810-2 818.
53 SUN C, LI J P, KUCHARSKI F, et al. Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations[J]. Climate Dynamics, 2019, 52(3): 1 395-1 411.
54 WILLS R C J, ARMOUR K C, BATTISTI D S, et al. Ocean-atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation[J]. Journal of Climate, 2019, 32(1): 251-272.
55 SUN C, LI J P, JIN F F. A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO[J]. Climate Dynamics, 2015, 45(7): 2 083-2 099.
56 DELWORTH T L, ZENG F R. The impact of the north Atlantic oscillation on climate through its influence on the Atlantic meridional overturning circulation[J]. Journal of Climate, 2016, 29(3): 941-962.
57 DELWORTH T L, ZENG F R, VECCHI G A, et al. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere[J]. Nature Geoscience, 2016, 9(7): 509-512.
58 DELWORTH T L, ZENG F R, ZHANG L P, et al. The central role of ocean dynamics in connecting the north Atlantic oscillation to the extratropical component of the Atlantic multidecadal oscillation[J]. Journal of Climate, 2017, 30(10): 3 789-3 805.
59 YUAN T L, OREOPOULOS L, ZELINKA M, et al. Positive low cloud and dust feedbacks amplify tropical north Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2016, 43(3): 1 349-1 356.
60 BROWN P T, LOZIER M S, ZHANG R, et al. The necessity of cloud feedback for a basin‐scale Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 2016, 43(8): 3 955-3 963.
61 DAI A G. Arctic amplification is the main cause of the Atlantic meridional overturning circulation weakening under large CO2 increases [J]. Climate Dynamics, 2022, 58(11): 3 243-3 259.
62 DENG J C, DAI A G. Sea ice-air interactions amplify multidecadal variability in the North Atlantic and Arctic region[J]. Nature Communications, 2022, 13: 2100.
63 BELLUCCI A, MARIOTTI A, GUALDI S. The role of forcings in the twentieth-century north Atlantic multidecadal variability: the 1940-75 north Atlantic cooling case study[J]. Journal of Climate, 2017, 30(18): 7 317-7 337.
64 MURPHY L N, BELLOMO K, CANE M, et al. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2017, 44(5): 2 472-2 480.
65 BELLOMO K, MURPHY L N, CANE M A, et al. Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble[J]. Climate Dynamics, 2018, 50(9): 3 687-3 698.
66 MANN M E, EMANUEL K A. Atlantic hurricane trends linked to climate change[J]. Eos, Transactions American Geophysical Union, 2006, 87(24): 233.
67 WATANABE M, TATEBE H. Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes[J]. Climate Dynamics, 2019, 53(7): 4 651-4 665.
68 HAUSTEIN K, OTTO F E L, VENEMA V, et al. A limited role for unforced internal variability in twentieth-century warming[J]. Journal of Climate, 2019, 32(16): 4 893-4 917.
69 ZHANG R, DELWORTH T L, DIXON K W, et al. Have aerosols caused the observed Atlantic multidecadal variability? [J]. Journal of the Atmospheric Sciences, 2013, 70(4): 1 135-1 144.
70 KNUDSEN M F, JACOBSEN B H, SEIDENKRANTZ M S, et al. Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age[J]. Nature Communications, 2014, 5: 3323.
71 RUPRICH-ROBERT Y, MSADEK R, CASTRUCCIO F, et al. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models[J]. Journal of Climate, 2017, 30(8): 2 785-2 810.
72 SUTTON R T, HODSON D L R. Climate response to basin-scale warming and cooling of the north Atlantic Ocean[J]. Journal of Climate, 2007, 20(5): 891-907.
73 O’REILLY C H, WOOLLINGS T, ZANNA L. The dynamical influence of the Atlantic multidecadal oscillation on continental climate[J]. Journal of Climate, 2017, 30(18): 7 213-7 230.
74 MCCABE G J, PALECKI M A, BETANCOURT J L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(12): 4 136-4 141.
75 NIGAM S, GUAN B, RUIZ-BARRADAS A. Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains[J]. Geophysical Research Letters, 2011, 38(16). DOI: 10.1029/2011GL048650 .
76 RUPRICH-ROBERT Y, DELWORTH T, MSADEK R, et al. Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves[J]. Journal of Climate, 2018, 31(9): 3 679-3 700.
77 GHOSH R, MÜLLER W A, BAEHR J, et al. Impact of observed north Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating[J]. Climate Dynamics, 2017, 48(11): 3 547-3 563.
78 QASMI S, CASSOU C, BOÉ J. Teleconnection between Atlantic multidecadal variability and European temperature: diversity and evaluation of the coupled model intercomparison project phase 5 models[J]. Geophysical Research Letters, 2017, 44(21). DOI:10.1002/2017gl074886 .
79 GOLDENBERG S B, LANDSEA C W, MESTAS-NUNEZ A M, et al. The recent increase in Atlantic hurricane activity: causes and implications[J]. Science, 2001, 293(5 529): 474-479.
80 WANG C Z, DONG S F, EVAN A T, et al. Multidecadal covariability of north Atlantic Sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes[J]. Journal of Climate, 2012, 25(15): 5 404-5 415.
81 ZHANG R, DELWORTH T L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes[J]. Geophysical Research Letters, 2006, 33(17). DOI: 10.1029/2006GL026267 .
82 KNIGHT J R, FOLLAND C K, SCAIFE A A. Climate impacts of the Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2006, 33(17): L17706.
83 SI D, DING Y H. Oceanic forcings of the interdecadal variability in east Asian summer rainfall[J]. Journal of Climate, 2016, 29(21): 7 633-7 649.
84 MONERIE P A, ROBSON J, DONG B W, et al. Role of the Atlantic multidecadal variability in modulating East Asian climate[J]. Climate Dynamics, 2021, 56(1): 381-398.
85 LI Shuanglin, JING Yuanyuan, LUO Feifei. The potential connection between China surface air temperature and the Atlantic Multidecadal Oscillation(AMO) in the Pre-industrial Period[J]. Scientia Sinica (Terrae), 2015, 45(6): 864-878.
李双林, 井元元, 罗菲菲. 工业革命前中国气温与大西洋年代际振荡(AMO)的可能联系[J]. 中国科学: 地球科学, 2015, 45(6): 864-878.
86 FOLLAND C K, PALMER T N, PARKER D E. Sahel rainfall and worldwide sea temperatures, 1901-85[J]. Nature, 1986, 320(6 063): 602-607.
87 MARTIN E R, THORNCROFT C, BOOTH B B B. The multidecadal Atlantic SST—Sahel rainfall teleconnection in CMIP5 simulations[J]. Journal of Climate, 2014, 27(2): 784-806.
88 HUA W J, DAI A G, ZHOU L M, et al. An externally forced decadal rainfall seesaw pattern over the Sahel and southeast Amazon[J]. Geophysical Research Letters, 2019, 46(2): 923-932.
89 KRISHNAMURTHY L, KRISHNAMURTHY V. Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole[J]. Climate Dynamics, 2016, 46(7/8): 2 269-2 285.
90 MONERIE P A, ROBSON J, DONG B W, et al. Effect of the Atlantic multidecadal variability on the global monsoon[J]. Geophysical Research Letters, 2019, 46(3): 1 765-1 775.
91 LU R Y, DONG B W, DING H. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon[J]. Geophysical Research Letters, 2006, 33(24): L24701.
92 LI S L, PERLWITZ J, QUAN X W, et al. Modelling the influence of north Atlantic multidecadal warmth on the Indian summer rainfall[J]. Geophysical Research Letters, 2008, 35(5): L05804.
93 AHMAD A, LI S L, LUO F F, et al. The unstable connection between Atlantic Multidecadal Oscillation and Indian summer monsoon in CESM-LE[J]. Climate Dynamics, 2022, 58(5/6): 1 525-1 537.
94 WANG Y M, LI S L, LUO D H. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D2): D02112.
95 LUO F F, LI S L, FUREVIK T. The connection between the Atlantic Multidecadal Oscillation and the Indian summer monsoon in Bergen climate model version 2.0[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D19): D19117.
96 WANG L, XU P Q, CHEN W, et al. Interdecadal variations of the silk road pattern[J]. Journal of Climate, 2017, 30(24): 9 915-9 932.
97 HONG X W, LU R Y, LI S L. Amplified summer warming in Europe-west Asia and northeast Asia after the mid-1990s[J]. Environmental Research Letters, 2017, 12(9): 094007.
[1] 徐一丹,李建平,汪秋云,林霄沛. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
[2] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[3] 周天军, 吴波. 年代际气候预测问题:科学前沿与挑战[J]. 地球科学进展, 2017, 32(4): 331-341.
[4] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[5] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[6] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[7] 王万里, 王颢樾, 谢应齐, 王卫国,王祖武, 王凯,杜良敏,邓南圣,蔡述明,刘耀林. 夏季东亚大槽和副热带高压年代际变化的分析[J]. 地球科学进展, 2012, 27(3): 304-320.
[8] 张立凤, 吕庆平, 张永垂. 北太平洋涡旋振荡研究进展[J]. 地球科学进展, 2011, 26(11): 1143-1149.
[9] 邹立尧,国世友,牛宁. 三江平原1960—2004年农业气候环境年代际变化[J]. 地球科学进展, 2010, 25(8): 844-850.
[10] 曲维政;陈璐;黄菲;张微;朱小洁;邓声贵;杜凌. 南半球对流层气候年代际变化及其与太阳活动的联系[J]. 地球科学进展, 2005, 20(7): 794-803.
[11] 黄先香;施能;顾骏强;高鸿. 1948—2001年全球大尺度区域 6~8月降水的长期变化[J]. 地球科学进展, 2004, 19(5): 824-830.
阅读次数
全文


摘要