[1] 中国科学院地学部“中国地球科学发展战略”研究组.地球科学:世纪之交的回顾与展望[M].青岛:山东教育出版社,2002.65.
[2] 中华人民共和国科学技术部、国家自然科学基金委员会.中国基础学科发展报告(2001-2005) [R].2001,367.
[3] 汪品先.从出版物看中国的地球科学[A].见:中国地球科学发展战略的若干问题[C].北京:科学出版社,1998. 64-77.
[4] Brasseur G, Moore III B. The new and evolving IGBP[J].Global Change Newsletter, 2002,50: 1-3.
[5] IPSC. Earth, Oceans and Life: Integrated Ocean Drilling Program, Initial Science Plan, 2003-2013[M]. Washington DC:IWG Supporting Office, 2001.110. [译地球,海洋与生命-IODP初始科学计划[M]. 上海:同济大学出版社,2003.96]
[6] EGS-AGU-EGU. Scientific Programme, EGS-AGU-EGU Joint Assembly, Nice, France, 06-11 April 2003
[7] Schellnhuber H J. “Earth system” analysis and the second Copernican revolution[J]. Nature, 1999,402: C19-C22.
[8] Munk W. Ocean freshening, sea level rising[J]. Science, 2003,300: 2041-2043.
[9] Thompson L, Mosley-Thompson E, Davis M E, et al. KilimanJaro ice core records: Evidence of Holocene climate change in tropical Africa[J]. Science, 2002,298:589-593.
[10] Hoskins B J. Climate change at cruising altitude?[J]. Science, 2003,301: 469-470.
[11] Jacobs S S, Giulivi C F, Mele P A. Freshening of the Ross Sea during the late 20th century[J]. Science, 2002,297: 386-389.
[12] Kleypas J A, Buddemeier R W, Archer D, et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs[J]. Science, 1999,284: 118-120.
[13] Gattuso J P, Buddemeier R W. Calcification and CO2[J]. Nature, 2000,407: 311-313.
[14] Pockley P. Global warming identified as main threat to coral reefs[J]. Nature, 2000,407: 932.
[15] Dickey J O, Marcus S L, de Viron O, et al. Recent Earth oblateness variations: Unraveling climate and postglacial rebound effects[J]. Science, 2001,298: 1 975-1 977.
[16] Verburg P, Hecky R E, Kling H. Ecological consequences of a century of warming in Lake Tanganyika[J]. Science, 2003,301: 505-507.
[17] Zhang P, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2/4 Myr ago due to the influence of climate change on erosion rates[J]. Nature,2001, 410: 891-897.
[18] Trenberth K E, Stepaniak D P, Caron J M. The global monsoon as seen through the divergent atmospheric circulation[J]. Journal of Climate, 2000,13: 3 969-3 993.
[19] Zhu Xun.To implement global energy strategies, to establish a global supply system[J].Science & Technology Review,2003,203(7):3-8[朱训. 实行全球能源战略,建立全球供应体系[J]. 科技导报,2003,7:3-8.]
[20] KoJima S. Deep-sea chemoautosynthesis-based communities in the Northwestern Pacific[J]. Journal of Oceanography, 2002,58: 343-363.
[21] Parker R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments[J]. Nature, 1994,371: 410-413.
[22] Coolen M J, Cypionka H, Sass A M, et al. Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes[J]. Science, 2002,296: 2 407-2 410.
[23] Krumholz L R. Microbial communities in the deep subsurface[J]. Hydrology Journal, 2000,8: 4-10.
[24] Thorseth I H, Torsvik T, Torsvik V, et al. Diversity of life in ocean floor basalt[J]. Earth and Planetary Science Letters, 2001,194: 31-37.
[25] Ingebritsen S E, Sanford W E, Toth J. Recent studies on bacterial populations and processes in subseafloor sediments: A review[J]. Hydrology Journal,2000, 8: 11-28.
[26] Huang Li. Archaea: The trird form of life[J]. Science, 2000,(3):47-49.[黄力. 古菌:生命的第三种形式[J].科学,2000,(3):47-49.]
[27] Banfield J E, Marshall C R. Genomics and the geosciences[J]. Science, 2000,287: 605-606.
[28] Nealson K H. Sediment bacteria: Who's there, what are they doing, and what's new?[J]. Annual of Review Earth Planetary Science, 1997, 27: 403-434.
[29] Newman D,Banfield J F. Geomicrobiology: How molecular-scale interactions underpin biogeochemical system[J]. Science,2002, 296: 1 071-1 077.
[30] Macalady J, Banfield J F. Molecular geomicrobiology: Genes and geochemical cycling[J]. Earth and Planetary Science Letters,2003, 209: 1-17.
[31] Knoll A H. Life on a Young Planet:The First Three Billion Years of Evolution on Earth[M]. BJ: Princeton University Press, 2003.
[32] Ning Xiuren. Marine nanoplankton and picoplankton[J]. Donghai Marine Science,1997,15(3):60-64.[宁修仁. 海洋微型和超微型浮游生物[J].东海海洋,1997,15(3):60-64.]
[33] Xiao Tian. The study on marine bacterioplnakton ecology [J].Advances in Earth Sciences,2001,16(1):60-64.[肖天. 海洋浮游细菌的生态学研究 [J]. 地球科学进展,2001,16(1):60-64. ]
[34] Kolber Z S, Plumley F G, Lang A S, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean[J]. Science, 2001,292: 2 492-2 495.
[35] Copley J. All at sea[J]. Nature, 2002,415:572-574.
[36] Falkowski P G. The ocean's in visible forest[J]. Scientific American, August 2002,38-45.[Falkowski P G.海洋中的隐形森林[J].科学,2002,(12):32-39.]
[37] Liss P.Take the shuttle-From marine algae to atmospheric chemistry[J]. Science, 1999,285: 1217-1218.
[38] Andreae M O, Crutzen P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry[J]. Science, 1997,276: 1 052-1 058.
[39] Kabat P, Hoff H, HutJes R, et al. Terrestrial biosphere, climate and the water cycle[J]. Global Change Newsletter, 2001,46: 31-34.
[40] Pitman A, Pielke Sr R, Avissar R, et al. The role of the land surface in weather and climate: Does the land surface matter?[J]. Global Change Newsletter, 1999,39: 4-11.
[41] Silva Dias M A, Nobre C A, Marengo J A. The interaction of cloud and rain with the biosphere[J]. Global Change Newsletter, 2001,45: 8-11.
[42] Pennisi E. Modernizing the tree of life[J]. Science, 2003,300: 1 692-1 697.
[43] Nisbet E G, Sleep N H. The habitat and nature of early life[J]. Nature,2001, 409: 1 083-1 091.
[44] Des Marais D J. When did photosynthesis emerge on Earth?[J]. Science, 2000,289:1 703-1 705.
[45] Berner R A. The rise of plants and their effect on weathering and atmospheric CO2[J]. Science, 1997,276: 544-546.
[46] Badger M R, Andrews T J, Whitney S M, et al.The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae[J]. Canadian Journal of Botany, 1998,76: 1 052-1 071.
[47] Cerling T E. Paleorecords of C4 plants and ecosystems[A]. In: Sage R F, Monson R K, eds. C4 Plant Biology[C]. Academic Press,1999. 445-469.
[48] Line M A. The enigma of the origin of life and its timing[J]. Microbiology, 2002,148: 21-27.
[49] Karl D, Leteller R, Tupas L, et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean[J]. Nature, 1997,388: 533-538.
[50] Ganeshram R S, Pedersen T F, Calvert S E, et al. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories[J]. Nature, 2002,415: 156-159.
[51] Lovelock J E. Geophysiology—The science of Gaia[A]. In: Schneider S H, Boston P J, eds. Scientists on Gaia[C]. MIT Press, 1991.3-10.
[52] Dudley R. Atmospheric oxygen and the evolution of insect gigantism[J]. Geophysical Research Abstracts, EGU, 2003, 5:06986.
[53] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions[J]. Science, 2001,294: 1 086-1 088.
[54] Dickson J A. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans[J]. Science, 2002,298: 1 222-1 223.
[55] Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998,144: 3-19.
[56] Hart M B, Hylton M D, Oxford M J, et al. The search for the origin of the planktic foraminifera[J]. Journal of the Geological Society, London, 2003, 160: 341-343.
[57] Bains S, Norris R D, Corfield R M, et al. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback[J]. Nature,2000, 407:171-174.
[58] Field J G, Hempel G, Summerhayes C P. Oceans 2020: Science, Trends, and the Challenge of Sustainability[M]. Island Press, 2002.
[59] Fedorov A V, Philander S G. Is El Niño changing? [J]. Science,2000,288: 1 997-2 002.
[60] McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean[J]. Nature, 2002,415: 603-608.
[61] Turk D, McPhaden M J, Busalacchi A J, et al.Remotely sensed biological production in the Equatorial Pacific[J]. Science, 2001,293: 471-474.
[62] Hoerling M P, Hurrell J W, Xu T. Tropical origins for recent North Atlantic climate change[J]. Science, 2001, 292:90-92.
[63] Yuan X, Martinson D G. The Antarctic Dipole and its predictability[J]. Geophysical Research Letters, 2001,28: 3 609-3 612.
[64] Cane M A, Evans M. Do the tropics rule?[J]. Science, 2000,290:1 107-1 008.
[65] Johnson G C, McPhaden M J. Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean[J]. Journal of Oceanography,1999, 29: 3 073-3 089.
[66] Liu Z, Yang H. Extratropical control of tropical climates, the atmospheric bridge and ocean tunnel[J]. Geophysical Research Letters,2003, 30:1 230-1 233.
[67] Tulhope A W, Chilcott C P, McCulloch M T, et al.Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science, 2001,291: 1 511-1 517.
[68] Clement A C, Seager R, Cane M A. Orbital controls on the El Niño /Southern Oscillation and the tropical climate[J]. Paleoceanography,1999, 14: 441-456.
[69] Clement A C, Cane M A, Seager R. An orbitally driven tropical source for abrupt climate change[J]. Journal of Climate, 2001,14: 2 369-2 375.
[70] Martin J H. Iron deficiency limits phytoplankton growth in northeast Pacific subarctic[J]. Nature, 1988,331: 242-243.
[71] Martin J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990,5: 1-13.
[72] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J]. Nature,1999, 399: 429-436.
[73] Martin J, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature,1994, 371: 123-129.
[74] Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature,2000, 407: 695-702.
[75] Archer D, Winguth A, Lea D, et al. What caused the glacial /interglacial atmospheric pCO2 cycles?[J]. Reviews of Geophysics, 2000,38: 159-189.
[76] Harrison K. Role of increased marine silica input on paleo-pCO2 levels[J].Paleoceanography, 2000,15: 292-298.
[77] Nozaki Y, Yamamoto Y. Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced "alkalinity pump" hypothesis[J]. Global Biogeochemical Cycles, 2001,15: 555-567.
[78] Treguer P, Pondaven P. Silica control of carbon dioxide[J]. Nature, 2000,406: 358-359.
[79] Wang Pinxian. Ice and carbon in climate evolution[J]. Earth Saience Frontiers,2002,9(1):85-93.[汪品先. 气候演变中的冰与碳[J]. 地学前缘,2002,9(1):85-93.]
[80] Wang Pinxian, Tian J, Cheng X, et al. Carbon reservoir change preceded maJor ice-sheet expansion at the Mid-Brunhes event[J]. Geology,2002, 31:239-242.
[81] Hay W W. Pleistocene-Holocene fluxes are not the Earth's norm[A]. In: Material Flux on the Surface of the Earth[C]. Washington DC:National Academy Press, 1994.15-27.
[82] Sarnthein M, Kennett J P, Allen J R M, et al. Decadal-to-millennial-scale climate variability-chronology and mechanisms: Summary and recommendations[J]. Quaternary Science Reviews, 2002,21: 1 121-1 128.
[83] Labeyrie L, Cole J, Alverson K, et al. The history of climate dynamics in the Late Quaternary[A]. In: Alverson K, Bradley R S, Pedersen T F,eds.Paleoclimate, Global Change and the Future[C]. Springer, 2003.33-61.
[84] Broecker W S. Paleocean circulation during the last deglaciation: A bipolar seesaw?[J]. Paleoceanography, 1998,13: 119-121.
[85] Stocker T F. Past and future reorganizations in the climate system[J]. Quaternary Science Reviews, 2000,19: 301-319.
[86] Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model[J]. Nature, 2000,405:425-429.
[87] Hoffman P F, Schrag D P. Snowball Earth[M]. Scientific American, 2000. 68-75.
[88] Ryan W, Pitman W, Shimkus K, et al. An abrupt drowning of the Black Sea shelf[J]. Marine Geology, 1997,138:119-126.
[89] Ryan W, Major C O, Lericolais G, et al. Catastrophic flooding of the Black Sea[J]. Annual of Review Earth Planetary Science,2003, 31, 525-554.
[90] Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? [J].Science,2002, 297: 1 137-1 142.
[91] Kerr R A . Could poor nutrient have held life back?[J]. Science, 2002,297: 1 104-1 105.
[92] Riebesell U, Zondervan I, Rost B, et al. Effects of increasing atmospheric CO2 on phytoplankton communities and the biological carbon pump[J]. Global Change Newsletter,2001, 47: 12-15.
[93] Brasseur G, Budich R, Komen G. European network for Earth system modeling[J]. Geophysical Research Abstracts, 2003,5: 06708.
[94] Ganopolski A, Rahmstorf S, Petoukhou V, et al. Simulation of modern and glacialclimates with a couples global model of intermediate complexity[J]. Nature, 1998,391: 351-356.
[95] Kasting J F, Toon O B, Pallock J B. How climate evolved on the terrestrial planets[J]. Scientific American, 1998,(2): 46-55.
[96] Berner R A, Lassaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983,283: 641-683.
[97] Des Marais D J. Carbon exchange between the mantle and the crust, and its effect upon the atmosphere: Today compared to Archean time[A]. In: Sandquist E T, Broecker W S,eds.The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present[C]. Geophysical Monograph ,1985,32: 602-611.
[98] Kerrick D M, McKibben M A, Seward T M, et al. Convective hydrothermal CO2 emission from high heat flow regions[J]. Chemical Geology, 1995,121: 285-293.
[99] Kerrick D M, Caldeira K. Paleoatmospheric consequences of CO2 released during early Cenozoic regional metamorphism in the Tethyan orogen[J]. Chemical Geology,1993, 108: 201-230.
[100] Kerrick D M, Caldeira K. Metamorphic degassing from orogenic belts[J]. Chemical Geology, 1998,145: 213-232.
[101] Raymo M E, Ruddiman W F. Tectonic forcing of the late Cenozoic climate[J]. Nature, 1992,359: 117-122.
[102] Wyllie P J. Magma genesis, tectonics, and chemical differentiation of the Earth[J]. Reviews of Geophysics, 1988,26: 370-404.
[102] Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth Planetary Science, 2002,30: 385-491.
[103] Poli S, Schmidt M W. H2O transport and rrelease in subduction zones: Experimental constraints on basaltic and andesitic systems[J]. Journal of Geophysical Research, 1995,100: 22 299-22 314.
[104] Dixon J E, Leist L, Langmuir C, et al. Recycled dehydrated lithosphere observed in plume-influences mid-ocean-ridge basalt[J]. Nature, 2002,420: 385-389.
[105] Danyushevsky L V. The effect of small amounts of H2O on crystallizatioin of mid-Ocean ridge and backarc basin magmas[J]. Journal of Volcanology and Geothermal Research, 2001,110: 265-280.
[106] van der MeJide M, Marone F, Giardini D, et al. Seismic evidence for water deep in Earth's upper mantle[J]. Science, 2003,300: 1 556-1 558.
[107] Tatsumi Y, Kogiso T. The subduction factory: Its role in the evolution of the Earth's mantle[A]. In: Frontier Research on Earth Evolution(vol.1)[C]. Tokyo:IFREE, JAMSTEC, 2003. 59-62.
[108] Murakami M, Hirose K, Yurimoto H, et al. Water in Earth's lower mantle[J]. Science, 2002,295: 1 885-1 887.
[109] Van Keken P E, Hauri E H, Ballentine C J. Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity[J]. Annual Review of Earth Planetary Science, 2002, 30: 493-525.
[110] Bercovici D, Karato S I. Whole-mantle convection and the transition-zone water filter[J]. Nature, 2003,425: 39-44.
[111] Hofmann A W. Just add water[J]. Nature, 2003,425: 24-25.
[112] Tackley P J. Mantle convection and plate tectonics: Toward an integrated physical and chemical theory[J]. Science, 2000,288: 2002-2007.
[113] Gurnis M, Muller R D, Moresi L. Cretaceous vertical motion of Australia and the Australian-Antarctic discordance[J]. Science, 1998,279: 1 499-1 504.
[114] Gurnis M. Sculping the Earth from inside out[M]. Scientific American, 2001(March): 40-47.
[115] Renne P. Flood basalts - bigger and badder[J]. Science, 2002,296: 1 812-1 813.
[116] Frey F A, Coffin M F, Wallace P J, et al. Leg 183 synthesis: Kerguelen Plateau-Broken Ridge—A large igneous province[A]. In: Frey F A, Coffin M F, Wallace P J, et al, eds. Proceeding of ODP, Science Results[C] 2003,183:1-48.
[117] Buffett B A. Earth's core and the geodynamo[J]. Science, 2000,288: 2 007-2 012.
[118] Lyon,J.G. The solar wind-magnetosphere-ionosphere system[J]. Science, 2000,288: 1 987-1 991.
[119] Baumgartner S, Beer J, Masarik J, et al. Geomagnetic modulation of the 36Cl flux in the GRIP ice core, Greenland[J]. Sceicne, 1998,279: 1 330-1 332.
[120] Frank M, Schwarz B, Baumann S, et al. A 200 ka record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments[J]. Earth and Planetary Science Letters, 1997,149: 121-129.
[121] Guyodo Y, Valet J P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr[J]. Nature, 1999,399: 249-252.
[122] Zhu Rixiang. Morphology of the magnetic field duriy polavity transition[A]. In: Chen Shupeng ed. Earth System Science[C]. Beijing: China Science and Technology Press,1998.559-560.[朱日祥. 极性转换期间地球磁场形态学[A]见: 陈述彭主编.地球系统科学[C].北京:中国科学技术出版社,1998.559-560.]
[123] Falkowski P, Scholes R J, Boyle E, et al. Global carbon cycle: A test of our knowledge of Earth as a system[J]. Science, 2000,290: 291-296.
[124] Elliot S, Blake D R, Duce R A, et al. Motorization of China implies changes in Pacific air chemistry and primary production[J]. Geophysical Research Letters, 1997,24: 2 671-2 674.
[125] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161: 59-88.
|