Please wait a minute...
img img
高级检索
地球科学进展  2003, Vol. 18 Issue (6): 837-851    DOI: 10.11867/j.issn.1001-8166.2003.06.0837
研究论文     
我国的地球系统科学研究向何处去
汪品先
同济大学海洋地质实验室,上海 200092
EARTH SYSTEM SCIENCE IN CHINA [WT3HX]QUO VADIS?
Wang Pinxian
Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
 全文: PDF(783 KB)  
摘要:

近15年来,全球变化与地球系统科学研究在中国广泛开展,我国科学家越来越积极地参加各项国际计划。当前,一些重大的国际计划正在进入其新阶段(如IGBP-II,IODP),恰好我国也正在制定科技发展中长期规划,迫切需要回顾我国地球系统科学的现状并探讨其今后方向。尽管中国作者的国际论文数量在增长,我国地球系统科学落后于国际的差距仍有拉大的趋势:国际前沿的许多热点问题,在中国尚未提上日程;中国学者在国际计划中早期多有贡献,但在项目总结中却很少有份。为此,提出 3点建议:(1)中国地球科学家应当扩大视野、立足本国、面向全球;(2)应当注意国际前沿动向,促进地学与生命科学在分子水平上的结合;(3)中国的地球科学,应当从以描述为主向探索理的方向发展。我们不应当满足于向国际学术界输出"原料",而要积极参加地球系统科学中关键问题的理论探讨。

关键词: 地球系统科学地球圈层相互作用地学与生命科学的结合    
Abstract:

During the past 15 years, the global change and Earth system sciences have been extensively developed in China, with increasingly active participation of Chinese scientists in various international programs. Currently, the major international programs are entering their new phases (e.g. IGBP-II, IODP), and China is outlining its National Middle-to-Long Term Plan for Science and Technology Development, providing a need to review the status of the Earth system science in China and to reconsider its future direction. Regardless of the growing number of international publications by Chinese scientists, a trend of increasing lag of the Chinese behind international Earth system sciences studies appears to remain: Many "hot-spot" issues on the international frontiers have not yet been raised in China, and Chinese scientists are rarely involved in synthetic studies of international programs despite of their early-stage contributions. Consequently, the paper presents three suggestions as follows:(1) The time is ripe for Chinese Earth scientists to broaden their geographical scope and to attack scientific problems of global scale. The majority of Earth science studies in China may still focus on domestic issues, but a global view is needed when interpreting regional or local phenomena. Small groups should be encouraged to directly enter into global competition, working on oceanic or planetary issues. (2)To follow the international frontiers, China has to promote incorporation between Earth and life sciences at a molecular level. As the results of recent discovery of the "Deep Biosphere" under sea floor and of geochemical role of underground microbes, some core geoscience and bioscience concepts are being fundamentally revised.  And the evolution of life is to be approached from an integration of paleontology, molecular biology, and geochemistry. (3) Chinese Earth science is to be promoted to shift from basically descriptive work to mechanism searching. We should not be satisfied with providing "raw material" export to the global science, but should be active in theoretical studies directed to key questions in the Earth system science. For this purpose, we need well-designed problem-oriented field and laboratory experiments, and hypothesis-testing numerical modeling, in addition to high-quality records of observations and analyses.

Key words: Earth system science    Interactions between Earth sub-systems    Incorporation between Earth and life sciences.
收稿日期: 2003-10-09 出版日期: 2003-12-01
:  P  
通讯作者: 汪品先     E-mail: pxwang@online.sh.cn
作者简介: 汪品先(1936-),男,江苏苏州人,中国科学院院士,教授,主要从事海洋地质、微体古生物学研究.E-mail:pxwang@online.sh.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪品先

引用本文:

汪品先. 我国的地球系统科学研究向何处去[J]. 地球科学进展, 2003, 18(6): 837-851.

Wang Pinxian. EARTH SYSTEM SCIENCE IN CHINA [WT3HX]QUO VADIS?. Advances in Earth Science, 2003, 18(6): 837-851.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2003.06.0837        http://www.adearth.ac.cn/CN/Y2003/V18/I6/837

[1] 中国科学院地学部中国地球科学发展战略研究组.地球科学:世纪之交的回顾与展望[M].青岛:山东教育出版社,2002.65.

[2] 中华人民共和国科学技术部、国家自然科学基金委员会.中国基础学科发展报告(2001-2005) [R].2001,367.

[3] 汪品先.从出版物看中国的地球科学[A].:中国地球科学发展战略的若干问题[C].北京:科学出版社,1998. 64-77.

[4] Brasseur G, Moore III B. The new and evolving IGBP[J].Global Change Newsletter, 2002,50: 1-3.

[5] IPSC. Earth, Oceans and Life: Integrated Ocean Drilling Program, Initial Science Plan, 2003-2013[M]. Washington DC:IWG Supporting Office, 2001.110. [译地球,海洋与生命-IODP初始科学计划[M]. 上海:同济大学出版社,2003.96]

[6] EGS-AGU-EGU. Scientific Programme, EGS-AGU-EGU Joint Assembly, Nice, France, 06-11 April 2003

[7] Schellnhuber H J. “Earth system” analysis and the second Copernican revolution[J]. Nature, 1999,402: C19-C22.

[8] Munk W. Ocean freshening, sea level rising[J]. Science, 2003,300: 2041-2043.

[9] Thompson L, Mosley-Thompson E, Davis M E, et al. KilimanJaro ice core records: Evidence of Holocene climate change in tropical Africa[J]. Science, 2002,298:589-593.

[10] Hoskins B J. Climate change at cruising altitude?[J]. Science, 2003,301: 469-470.

[11] Jacobs S S, Giulivi C F, Mele P A. Freshening of the Ross Sea during the late 20th century[J]. Science, 2002,297: 386-389.

[12] Kleypas J A, Buddemeier R W, Archer D, et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs[J]. Science, 1999,284: 118-120.

[13] Gattuso J P, Buddemeier R W. Calcification and CO2[J]. Nature, 2000,407: 311-313.

[14] Pockley P. Global warming identified as main threat to coral reefs[J]. Nature, 2000,407: 932.

[15] Dickey J O, Marcus S L, de Viron O, et al. Recent Earth oblateness variations: Unraveling climate and postglacial rebound effects[J]. Science, 2001,298: 1 975-1 977.

[16] Verburg P, Hecky R E, Kling H. Ecological consequences of a century of warming in Lake Tanganyika[J]. Science, 2003,301: 505-507.

[17] Zhang P, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2/4 Myr ago due to the influence of climate change on erosion rates[J]. Nature,2001, 410: 891-897. 

[18] Trenberth K E, Stepaniak D P, Caron J M. The global monsoon as seen through the divergent atmospheric circulation[J]. Journal of Climate, 2000,13: 3 969-3 993.

[19] Zhu Xun.To implement global energy strategies, to establish a global supply system[J].Science & Technology Review,2003,203(7):3-8[朱训. 实行全球能源战略,建立全球供应体系[J]. 科技导报,2003,7:3-8.]

[20] KoJima S. Deep-sea chemoautosynthesis-based communities in the Northwestern Pacific[J]. Journal of Oceanography, 2002,58: 343-363. 

[21] Parker R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments[J]. Nature, 1994,371: 410-413.

[22] Coolen M J, Cypionka H, Sass A M, et al. Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes[J]. Science, 2002,296: 2 407-2 410.

[23] Krumholz L R. Microbial communities in the deep subsurface[J]. Hydrology Journal, 2000,8: 4-10.

[24] Thorseth I H, Torsvik T, Torsvik V, et al. Diversity of life in ocean floor basalt[J]. Earth and Planetary Science Letters, 2001,194: 31-37.

[25] Ingebritsen S E, Sanford W E, Toth J. Recent studies on bacterial populations and processes in subseafloor sediments: A review[J]. Hydrology Journal,2000, 8: 11-28.

[26] Huang Li. Archaea: The trird form of life[J]. Science, 2000,(3):47-49.[黄力. 古菌:生命的第三种形式[J].科学,2000,3:47-49.]

[27] Banfield J E, Marshall C R. Genomics and the geosciences[J]. Science, 2000,287: 605-606.

[28] Nealson K H. Sediment bacteria: Who's there, what are they doing, and what's new?[J]. Annual of Review Earth Planetary Science, 1997, 27: 403-434.

[29] Newman D,Banfield J F. Geomicrobiology: How molecular-scale interactions underpin biogeochemical system[J]. Science,2002, 296: 1 071-1 077.

[30] Macalady J, Banfield J F. Molecular geomicrobiology: Genes and geochemical cycling[J]. Earth and Planetary Science Letters,2003, 209: 1-17.

[31] Knoll A H. Life on a Young Planet:The First Three Billion Years of Evolution on Earth[M]. BJ: Princeton University Press, 2003.

[32] Ning Xiuren. Marine nanoplankton and picoplankton[J]. Donghai Marine Science,1997,15(3):60-64.[宁修仁. 海洋微型和超微型浮游生物[J].东海海洋,1997,153:60-64.]

[33] Xiao Tian. The study on marine bacterioplnakton ecology [J].Advances in Earth Sciences,2001,161:60-64.[肖天. 海洋浮游细菌的生态学研究 [J]. 地球科学进展,2001,161:60-64. ]

[34] Kolber Z S, Plumley F G, Lang A S, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean[J]. Science, 2001,292: 2 492-2 495.

[35] Copley J. All at sea[J]. Nature, 2002,415:572-574.

[36] Falkowski P G. The ocean's in visible forest[J]. Scientific American, August 2002,38-45.[Falkowski P G.海洋中的隐形森林[J].科学,2002,12:32-39.]

[37] Liss P.Take the shuttle-From marine algae to atmospheric chemistry[J]. Science, 1999,285: 1217-1218.

[38] Andreae M O, Crutzen P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry[J]. Science, 1997,276: 1 052-1 058.

[39] Kabat P, Hoff H, HutJes R, et al. Terrestrial biosphere, climate and the water cycle[J]. Global Change Newsletter, 2001,46: 31-34.

[40] Pitman A, Pielke Sr R, Avissar R, et al. The role of the land surface in weather and climate: Does the land surface matter?[J]. Global Change Newsletter, 1999,39: 4-11.

[41] Silva Dias M A, Nobre C A, Marengo J A. The interaction of cloud and rain with the biosphere[J]. Global Change Newsletter, 2001,45: 8-11.

[42] Pennisi E. Modernizing the tree of life[J]. Science, 2003,300: 1 692-1 697.

[43] Nisbet E G, Sleep N H. The habitat and nature of early life[J]. Nature,2001, 409: 1 083-1 091.

[44] Des Marais D J. When did photosynthesis emerge on Earth?[J]. Science, 2000,289:1 703-1 705. 

[45] Berner R A. The rise of plants and their effect on weathering and atmospheric CO2[J]. Science, 1997,276: 544-546.

[46] Badger M R, Andrews T J, Whitney S M, et al.The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae[J]. Canadian Journal of Botany, 1998,76: 1 052-1 071.

[47] Cerling T E. Paleorecords of C4 plants and ecosystems[A]. In: Sage R F, Monson R K, eds. C4 Plant Biology[C]. Academic Press,1999. 445-469.

[48] Line M A. The enigma of the origin of life and its timing[J]. Microbiology, 2002,148: 21-27.

[49] Karl D, Leteller R, Tupas L, et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean[J]. Nature, 1997,388: 533-538.

[50] Ganeshram R S, Pedersen T F, Calvert S E, et al. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories[J]. Nature, 2002,415: 156-159.

[51] Lovelock J E. Geophysiology—The science of Gaia[A]. In: Schneider S H, Boston P J, eds. Scientists on Gaia[C]. MIT Press, 1991.3-10. 

[52] Dudley R. Atmospheric oxygen and the evolution of insect gigantism[J]. Geophysical Research Abstracts, EGU, 2003, 5:06986.

[53] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions[J]. Science, 2001,294: 1 086-1 088.

[54] Dickson J A. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans[J]. Science, 2002,298: 1 222-1 223.

[55] Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998,144: 3-19.

[56] Hart M B, Hylton M D, Oxford M J, et al. The search for the origin of the planktic foraminifera[J]. Journal of the Geological Society, London, 2003, 160: 341-343.

[57] Bains S, Norris R D, Corfield R M, et al. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback[J]. Nature,2000, 407:171-174.

[58] Field J G, Hempel G, Summerhayes C P. Oceans 2020: Science, Trends, and the Challenge of Sustainability[M]. Island Press, 2002.

[59] Fedorov A V, Philander S G. Is El Niño changing? [J]. Science,2000,288: 1 997-2 002.

[60] McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean[J]. Nature, 2002,415: 603-608.

[61] Turk D, McPhaden M J, Busalacchi A J, et al.Remotely sensed biological production in the Equatorial Pacific[J]. Science, 2001,293: 471-474.

[62] Hoerling M P, Hurrell J W, Xu T. Tropical origins for recent North Atlantic climate change[J]. Science, 2001, 292:90-92.

[63] Yuan X, Martinson D G. The Antarctic Dipole and its predictability[J]. Geophysical Research Letters, 2001,28: 3 609-3 612.

[64] Cane M A, Evans M. Do the tropics rule?[J]. Science, 2000,290:1 107-1 008.

[65] Johnson G C, McPhaden M J. Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean[J]. Journal of Oceanography,1999, 29: 3 073-3 089.

[66] Liu Z, Yang H. Extratropical control of tropical climates, the atmospheric bridge and ocean tunnel[J]. Geophysical Research Letters,2003, 30:1 230-1 233.

[67] Tulhope A W, Chilcott C P, McCulloch M T, et al.Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science, 2001,291: 1 511-1 517.

[68] Clement A C, Seager R, Cane M A. Orbital controls on the El Niño /Southern Oscillation and the tropical climate[J]. Paleoceanography,1999, 14: 441-456.

[69] Clement A C, Cane M A, Seager R. An orbitally driven tropical source for abrupt climate change[J]. Journal of Climate, 2001,14: 2 369-2 375.

[70] Martin J H. Iron deficiency limits phytoplankton growth in northeast Pacific subarctic[J]. Nature, 1988,331: 242-243.

[71] Martin J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990,5: 1-13.

[72] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J]. Nature,1999, 399: 429-436.

[73] Martin J, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature,1994, 371: 123-129.

[74] Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature,2000, 407: 695-702. 

[75] Archer D, Winguth A, Lea D, et al. What caused the glacial /interglacial atmospheric pCO2 cycles?[J]. Reviews of Geophysics, 2000,38: 159-189.

[76] Harrison K. Role of increased marine silica input on paleo-pCO2 levels[J].Paleoceanography, 2000,15: 292-298. 

[77] Nozaki Y, Yamamoto Y. Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced "alkalinity pump" hypothesis[J]. Global Biogeochemical Cycles, 2001,15: 555-567.

[78] Treguer P, Pondaven P. Silica control of carbon dioxide[J]. Nature, 2000,406: 358-359.

[79] Wang Pinxian. Ice and carbon in climate evolution[J]. Earth Saience Frontiers,2002,9(1):85-93.[汪品先. 气候演变中的冰与碳[J]. 地学前缘,2002,9(1):85-93.]

[80] Wang Pinxian, Tian J, Cheng X, et al. Carbon reservoir change preceded maJor ice-sheet expansion at the Mid-Brunhes event[J]. Geology,2002, 31:239-242.

[81] Hay W W. Pleistocene-Holocene fluxes are not the Earth's norm[A]. In: Material Flux on the Surface of the Earth[C]. Washington DC:National Academy Press, 1994.15-27.

[82] Sarnthein M, Kennett J P, Allen J R M, et al. Decadal-to-millennial-scale climate variability-chronology and mechanisms: Summary and recommendations[J]. Quaternary Science Reviews, 2002,21: 1 121-1 128.

[83] Labeyrie L, Cole J, Alverson K, et al. The history of climate dynamics in the Late Quaternary[A]. In: Alverson K, Bradley R S, Pedersen T F,eds.Paleoclimate, Global Change and the Future[C]. Springer, 2003.33-61. 

[84] Broecker W S. Paleocean circulation during the last deglaciation: A bipolar seesaw?[J]. Paleoceanography, 1998,13: 119-121.

[85] Stocker T F. Past and future reorganizations in the climate system[J]. Quaternary Science Reviews, 2000,19: 301-319. 

[86] Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model[J]. Nature, 2000,405:425-429.

[87] Hoffman P F, Schrag D P. Snowball Earth[M]. Scientific American, 2000. 68-75.

[88] Ryan W, Pitman W, Shimkus K, et al. An abrupt drowning of the Black Sea shelf[J]. Marine Geology, 1997,138:119-126.

[89] Ryan W, Major C O, Lericolais G, et al. Catastrophic flooding of the Black Sea[J]. Annual of Review Earth Planetary Science,2003, 31, 525-554.

[90] Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? [J].Science,2002, 297: 1 137-1 142.

[91] Kerr R A . Could poor nutrient have held life back?[J]. Science, 2002,297: 1 104-1 105.

[92] Riebesell U, Zondervan I, Rost B, et al. Effects of increasing atmospheric CO2 on phytoplankton communities and the biological carbon pump[J]. Global Change Newsletter,2001, 47: 12-15.

[93] Brasseur G, Budich R, Komen G. European network for Earth system modeling[J]. Geophysical Research Abstracts, 2003,5: 06708.

[94] Ganopolski A, Rahmstorf S, Petoukhou V, et al. Simulation of modern and glacialclimates with a couples global model of intermediate complexity[J]. Nature, 1998,391: 351-356.

[95] Kasting J F, Toon O B, Pallock J B. How climate evolved on the terrestrial planets[J]. Scientific American, 1998,(2): 46-55.

[96] Berner R A, Lassaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983,283: 641-683.

[97] Des Marais D J. Carbon exchange between the mantle and the crust, and its effect upon the atmosphere: Today compared to Archean time[A]. In: Sandquist E T, Broecker W S,eds.The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present[C]. Geophysical Monograph ,1985,32: 602-611.

[98] Kerrick D M, McKibben M A, Seward T M, et al. Convective hydrothermal CO2 emission from high heat flow regions[J]. Chemical Geology, 1995,121: 285-293.

[99] Kerrick D M, Caldeira K. Paleoatmospheric consequences of CO2 released during early Cenozoic regional metamorphism in the Tethyan orogen[J]. Chemical Geology,1993, 108: 201-230.

[100] Kerrick D M, Caldeira K. Metamorphic degassing from orogenic belts[J]. Chemical Geology, 1998,145: 213-232.

[101] Raymo M E, Ruddiman W F. Tectonic forcing of the late Cenozoic climate[J]. Nature, 1992,359: 117-122.

[102] Wyllie P J. Magma genesis, tectonics, and chemical differentiation of the Earth[J]. Reviews of Geophysics, 1988,26: 370-404.

[102] Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth Planetary Science, 2002,30: 385-491.

[103] Poli S, Schmidt M W. H2O transport and rrelease in subduction zones: Experimental constraints on basaltic and andesitic systems[J]. Journal of Geophysical Research, 1995,100: 22 299-22 314.

[104] Dixon J E, Leist L, Langmuir C, et al. Recycled dehydrated lithosphere observed in plume-influences mid-ocean-ridge basalt[J]. Nature, 2002,420: 385-389.

[105] Danyushevsky L V. The effect of small amounts of H2O on crystallizatioin of mid-Ocean ridge and backarc basin magmas[J]. Journal of Volcanology and Geothermal Research, 2001,110: 265-280.

[106] van der MeJide M, Marone F, Giardini D, et al. Seismic evidence for water deep in Earth's upper mantle[J]. Science, 2003,300: 1 556-1 558.

[107] Tatsumi Y, Kogiso T. The subduction factory: Its role in the evolution of the Earth's mantle[A]. In: Frontier Research on Earth Evolution(vol.1)[C]. Tokyo:IFREE, JAMSTEC, 2003. 59-62.

[108] Murakami M, Hirose K, Yurimoto H, et al. Water in Earth's lower mantle[J]. Science, 2002,295: 1 885-1 887.

[109] Van Keken P E, Hauri E H, Ballentine C J. Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity[J]. Annual Review of Earth Planetary Science, 2002, 30: 493-525.

[110] Bercovici D, Karato S I. Whole-mantle convection and the transition-zone water filter[J]. Nature, 2003,425: 39-44.

[111] Hofmann A W. Just add water[J]. Nature, 2003,425: 24-25.

[112] Tackley P J. Mantle convection and plate tectonics: Toward an integrated physical and chemical theory[J]. Science, 2000,288: 2002-2007.

[113] Gurnis M, Muller R D, Moresi L. Cretaceous vertical motion of Australia and the Australian-Antarctic discordance[J]. Science, 1998,279: 1 499-1 504.

[114] Gurnis M. Sculping the Earth from inside out[M]. Scientific American, 2001(March): 40-47.

[115] Renne P. Flood basalts - bigger and badder[J]. Science, 2002,296: 1 812-1 813.

[116] Frey F A, Coffin M F, Wallace P J, et al. Leg 183 synthesis: Kerguelen Plateau-Broken Ridge—A large igneous province[A]. In: Frey F A, Coffin M F, Wallace P J, et al, eds. Proceeding of ODP, Science Results[C] 2003,183:1-48.

[117] Buffett B A. Earth's core and the geodynamo[J]. Science, 2000,288: 2 007-2 012.

[118] Lyon,J.G. The solar wind-magnetosphere-ionosphere system[J]. Science, 2000,288: 1 987-1 991.

[119] Baumgartner S, Beer J, Masarik J, et al. Geomagnetic modulation of the 36Cl flux in the GRIP ice core, Greenland[J]. Sceicne, 1998,279: 1 330-1 332.

[120] Frank M, Schwarz B, Baumann S, et al. A 200 ka record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments[J]. Earth and Planetary Science Letters, 1997,149: 121-129.

[121] Guyodo Y, Valet J P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr[J]. Nature, 1999,399: 249-252.

[122] Zhu Rixiang. Morphology of the magnetic field duriy polavity transition[A]. In: Chen Shupeng ed. Earth System Science[C]. Beijing: China Science and Technology Press,1998.559-560.[朱日祥. 极性转换期间地球磁场形态学[A]: 陈述彭主编.地球系统科学[C].北京:中国科学技术出版社,1998.559-560.]

[123] Falkowski P, Scholes R J, Boyle E, et al. Global carbon cycle: A test of our knowledge of Earth as a system[J]. Science, 2000,290: 291-296.

[124] Elliot S, Blake D R, Duce R A, et al. Motorization of China implies changes in Pacific air chemistry and primary production[J]. Geophysical Research Letters, 1997,24: 2 671-2 674.

[125] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161: 59-88.

[1] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[2] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[3] 王卷乐, 林海, 冉盈盈, 周玉洁, 宋佳, 杜佳. 面向数据共享的地球系统科学数据分类探讨[J]. 地球科学进展, 2014, 29(2): 265-274.
[4] 曲建升,葛全胜,张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2008, 23(12): 1277-1284.
[5] 葛全胜,王芳,陈泮勤,田砚宇,程邦波. 全球变化研究进展和趋势[J]. 地球科学进展, 2007, 22(4): 417-427.
[6] 吕克解,周小刚. “地球系统探测新原理与新技术”优先领域与地球系统科学[J]. 地球科学进展, 2006, 21(10): 1097-1100.
[7] 王毅. 新一代对地观测系统的发展[J]. 地球科学进展, 2005, 20(9): 980-989.
[8] 马福臣;林海;黄鼎成;张志强;姚玉鹏. 从地球过程到人地和谐——关于地球系统研究科学战略的思考[J]. 地球科学进展, 2005, 20(5): 490-498.
[9] 孙枢. 对我国全球变化与地球系统科学研究的若干思考[J]. 地球科学进展, 2005, 20(1): 6-010.
[10] 刘燕华;葛全胜;张雪芹. 关于中国全球环境变化人文因素研究发展方向的思考[J]. 地球科学进展, 2004, 19(6): 889-895.
[11] 李明;侯春梅;张志强;迟秀丽. 地球系统科学中海洋研究:未来10年海洋全球变化研究前景 ———IGBP与 SCOR提出建立新的“海洋计划”[J]. 地球科学进展, 2004, 19(6): 918-920.
[12] 李延梅;张志强;巩杰. 英国自然环境研究委员会(NERC)地球系统科学研究计划———QUEST计划介绍[J]. 地球科学进展, 2004, 19(6): 921-924.
[13] 冯筠;高峰;曲建升. NASA地球科学事业(ESE)计划中的科学问题[J]. 地球科学进展, 2004, 19(6): 910-917.
[14] 周广胜;周莉;袁文平. 地球环境与生命过程[J]. 地球科学进展, 2004, 19(5): 706-711.
[15] 姚玉鹏;马福臣. 美国地球系统科学教育概况及对我国地球科学教育的启示[J]. 地球科学进展, 2004, 19(5): 712-714.