Please wait a minute...
img img
高级检索
地球科学进展  2001, Vol. 16 Issue (1): 113-119    DOI: 10.11867/j.issn.1001-8166.2001.01.0113
全球变化研究     
海洋浮游动物粪便通量
张武昌,张芳,王克
中国科学院海洋研究所,山东 青岛  266071
MARINE ZOOPLANKTON FECAL PELLETS FLUX
ZHANG Wu-chang, ZHANG Fang, WANG Ke
Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071,China
 全文: PDF 
摘要:

海洋浮游动物粪便颗粒的沉降被认为是碳从海洋表层向海底输送的主要途径之一,对研究碳通量和水层—底栖耦合具有重要意义。综述了有关浮游动物粪便的形态、产生率、分解速度和沉降速度的研究,以及近年来沉积物捕捉器样品的研究。虽然通过粪便产生率和沉降速度估计出的粪便通量很大,但是沉积物中粪便颗粒造成的碳通量所占比例不大。因此,对其它沉积途径的研究不容忽视。 

关键词: 浮游动物粪便碳通量桡足类海樽    
Abstract:

 The sinking zooplankton fecal pellets had been considered as one of the important component of marine vertical carbon flux. The study on fecal pellets flux is also vital to understand the benthic pelagic coupling. In this paper, the morphology, production rate, decomposition and sinking rate of zooplankton fecal pellets were reviewed. Estimates from above factors showed that fecal pellets played an important role in carbon sedimentation. But the results of sediment traps indicate that fecal pellet carbon constitute only a small part of the POC in the trap. Studies on other sediment processes such as the microbiol food web are needed.

Key words: Fecal pellets    Zooplankton    Carbon flux    Copepod    Salp.
收稿日期: 2000-03-03 出版日期: 2001-02-01
:  Q178.53  
基金资助:

国家自然科学基金项目“渤海生态系统动力学和生物资源持续利用研究”(编号: 49790010)资助.

通讯作者: 张武昌(1973-),男,山东济南人,助理研究员,主要从事海洋生态学研究.     E-mail: w.c.zhang@yeah.net
作者简介: 张武昌(1973-),男,山东济南人,助理研究员,主要从事海洋生态学研究. E-mail:w.c.zhang@yeah.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张武昌,张芳,王克. 海洋浮游动物粪便通量[J]. 地球科学进展, 2001, 16(1): 113-119.

ZHANG Wu-chang, ZHANG Fang, WANG Ke. MARINE ZOOPLANKTON FECAL PELLETS FLUX. Advances in Earth Science, 2001, 16(1): 113-119.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2001.01.0113        http://www.adearth.ac.cn/CN/Y2001/V16/I1/113

[1]  Wang R. Marine biological pump and global change [J]. Marine Science, 1992, (1): 18~21.
[2]  Paffenhofer G, Knowles S. Ecological implications of fecal pellet size, production and consumption by copepods [J]. J Mar Res, 1979, 37: 35~49.
[3]  Butler M, Dam H G. Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions: implications for vertical fluxes[J]. Mar Ecol Prog Ser, 1994,114: 81~91.
[4]  Dagg M J, Walser E. The effect of food concentration on fecal pellet size in marine copepods [J]. Limnol Oceanogr, 1986, 31(5): 1 066~1 071.
[5]  Gauld D T. A peritrophic membrane in calanoid copepods [J].Nature, 1957, 179: 325~326.
[6]  Raymont J E G, Gross F. On the feeding and breeding of Calanus finmarchicus under laboratory conditions [J]. Proc Roy Soc Edingburgh, 1942, 61: 267~287.
[7]  Marshall S M, Orr A P. On the biology of Calanus finmarchicus, food uptake, assimilation and excretion in adult and stage V Calanus [J]. J Mar Biol Assoc UK, 1955, 34: 495~529.
[8]  Corner E D, Head R N, Kilvington C C. On the nutrition and metabolism of zooplankton VIII: The grazing of Biddulphia cells by Calanus helgolandicus [J]. J Mar Biol Assoc UK, 1972, 52: 847~861.
[9]  Ayukai T, Nishizawa S. Defecation rate vs a possible measure of ingestion rate of Calanus pacificus (Copepoda∶Calanoida)[J]. Bull Plankton Soc Jap, 1990, 33: 3~10.
[10]  Lane P V Z, Smith S L, Urban J L,et al. Carbon flux and recycling associated with zooplanktonic fecal pellets on the shelf of the Middle Atlantic Bight [J]. Deep-Sea Res I, 1994, 41: 437~457.
[11]  Reeve M R, Walter M A. Observations on the existence of lower threshold and upper critical food concentrations for the copepod Acartia Tonsa Dana [J]. J Exp Mar Biol Ecol, 1977, 29: 211~221.
[12]  Gamble J C. Copepod grazing during a declining spring phytoplankton bloom in the northern North Sea [J]. Mar Biol, 1978, 49: 303~315.
[13]  Gonzalez H E, Smetacek V. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of the zooplankton faecal material [J]. Mar Ecol Prog Ser, 1994, 113:233~246.
[14]  Landry M R, Hassett R P, Fagerness V,et al. Effect of food acclimation on assimilation efficiency of Calanus Pacificus [J]. Limnol Oceanogr, 1984, 29(2): 361~364.
[15]  Morales C E. Carbon and nitrogen content of copepod fecal pellets: effect of food concentration and feeding behavior[J]. Mar Ecol Prog Ser, 1987, 36: 107~114.
[16]  Lundsgaard C, Olesen M. The origin of sedimenting detrital matter in a coastal system [J]. Limnol Oceanogr, 1997, 42(5): 1 001~1 005.
[17]  Bruland K W, Silver M W. Sinking rates of fecal pellets from gelatinous Zooplankton (Salps, Pteropods, Doliolids)[J]. Mar Biol, 1981, 63: 295~300.
[18]  Madin L P. Production composition and sedimentation of salp fecal pellets in oceanic waters [J]. Mar Biol, 1982, 25: 143~147.
[19]  Caron D A, Madin L P, Cole J J. Composition and degradation of salp fecal pellets: Implications for vertical flux environments [J]. Journal of marine Research, 1989, 47: 829~850.
[20]  Wiebe P H, Madin L P, Haury L R,et al. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea [J]. Mar Biol, 1979, 53: 249~255.
[21]  Morris R J, Bone Q, Head R,et al. Role of salps in the flux of organic matter to the bottom of the Ligurian Sea [J]. Mar Biol, 1988, 97: 237~241.
[22]  Iseki K. Particulate organic matter transport to the deep sea by salp fecal pellets [J]. Mar Ecol Prog Ser, 1981, 5: 55~60.
[23]  Matsueda H, Handa N, Inoue I,et al. Ecological significance of salp fecal pellets collected by sediment traps in the eastern North Pacific [J]. Mar Biol, 1986, 91: 421~431.
[24]  Komar P D, Morse A P, Small L F,et al. An analysis of sinking rates of natural copepod and euphausiid fecal pellets[J]. Limnol Oceanogr, 1981, 26(1): 172~180.
[25]  Dilon W P. Flotation technique for separating fecal pellets and small marine organisms from sand [J]. Limnol Oceanogr, 1964, 9: 601~602.
[26]  Bienfang P K. Herbivore diet affects fecal pellet settling [J].Can J Fish Aquat Sci, 1980, 37: 1 352~1 357.
[27]  Viitasalo M, Rosenberg M, Heiskanen A,et al. Sedimentation of copepod fecal material in the coastal northern Baltic Sea: Where did all the pellets go? [J]. Limnol Oceanogr, 1999, 44(6): 1 388~1 399.
[28]  Alldredge A L, Gorschalk C C, Macintyre S. evidence for sustained residence of macrocrustacean fecal pellets in surface waters off Southern California [J]. Deep-Sea Res,1987, 34: 1 641~1 652.
[29]  Honjo S, Roman M R. Marine copepod fecal pellets: production, preservation and sedimentation [J]. J Mar Res 1978,36: 45~57.
[30]  Gowing M M, Silver M W. Origins and microenvironments of bacteria mediationg fecal pellet decomposition in the sea[J]. Mar Biol, 1983, 73: 7~16.
[31]  Turner J T, Ferrante J. Zooplankton fecal pellets in aquatic ecosystems [J]. BioScience, 1979, 29: 670~677.
[32]  Honjo S. Coccoliths: Production, transportation and sedimentaton [J]. Mar Micropaleont, 1976, 1: 65~79.
[33]  Frankenberg D, Smith K L. Coprophagy in marine animals[J]. Limnol Oceanogr, 1967, 12: 443~450.
[34]  Paffenhofer G A, Strickland J D H. A note on the feeding of Calanus helgolandicus on detritus [J]. Mar Biol, 1970, 5:97~99.
[35]  Riley G A. Particulate organic matter in sea water [J]. Adv Mar Biol, 1970, 8: 1~118.
[36]  Bathmann U, Noji T T, Voss M,et al. Copepod fecal pellets: abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986 [J]. Mar Ecol Prog Ser, 1987, 38: 45~51.
[37]  Smetacek V S. Zooplankton standing stock, copepod feacal pellets and particulate detritus in Kiel Bight [J]. Estuar Coast Mar Sci, 1980, 477~490.
[38]  Von Bodungen B G, Fischer G, Mothig E M,et al. Sedimentation of Krill faeces during spring development of phytoplankton in Bransfield Strait, Antarctica [J]. SCOPE/UN-EP Sonderband, 1987, 62: 243~257.
[39]  Andreassen I, Nothig E M, Wassmann P. Vertical particle flux on the shelf off northern Spitsbergen, Norway [J]. Mar Ecol Prog Ser, 1996, 137: 215~228.
[40]  Lundsgaard C, Olesen M. The origin of sedimenting detrital matter in a coastal system [J]. Limnol Oceanogr, 1997, 42(5): 1 001~1 005.
[41]  Gonzalez H E, Ortiz V C, Sobarzo M. The role of fecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23°S), before and during the 1997~1998 El Ni n~o [J]. J Plankton Res, 2000, 22: 499~529.
[42]  Zhang Z. Some progress of the study on the ecosystem dynamics for benthic-pelagic coupling[J]. Journal of Ocean University of Qingdao, 2000, 30(1): 115~122.

[1] 苏 强. 生长速率假说及其在浮游动物营养动力学中的研究进展[J]. 地球科学进展, 2012, 27(11): 1204-1210.
[2] 张武昌,张翠霞,肖天. 海洋浮游生态系统中小型浮游动物的生态功能[J]. 地球科学进展, 2009, 24(11): 1195-1201.
[3] 严燕儿,赵斌,郭海强,吴千红. 生态系统碳通量估算中耦合涡度协方差与遥感技术研究进展[J]. 地球科学进展, 2008, 23(8): 884-894.
[4] 高众勇,陈立奇,CAI Wei-jun,WANG Yong-chen. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
[5] 张江勇;汪品先. 深海研究中的底栖有孔虫:回顾与展望[J]. 地球科学进展, 2004, 19(4): 545-551.
[6] 高全洲,沈承德. 河流碳通量与陆地侵蚀研究[J]. 地球科学进展, 1998, 13(4): 369-375.