[1] Li X Y, Jeanloz R. Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures. J Geophys Res, 1990, 95(B4): 5 067-5 078. [2] Duba A. Limits to electrical conductivity measurements of silicates. In: W Schreyer ed. High Pressure Researches in Geosciences. Schweizerbart.sche Verlagschandlung Stuttgart, 1982 375-381. [3] Dobson D P, Richmond N C, Brodholt J B. A high-temperature elect rical conduction mechanism in the lower mantle phase (Mg, Fe)1- x O. Science, 1997, 275(21): 1 779-1 781. [4] Gautason B, Muehlenbachs K. Oxygen diffusion in perovskite: implication for electrical conductivity in the lower mantle. Science, 1993, 260: 23, 518-521. [5] Hirsch L M, Shankland T J. Determination of defect equilibria in minerals. J Geophys Res, 1991, 96(B1):377-384. [6] Hirsch L M. Occurrence of small changes in electrical conduction of olivine arising from high-temperature creep. J Geosphs Res, 1989, 94(B12):17 861-17 870. [7] Shankland T J, Peyronneau J, Poirier J P. Electrical conductivity of the earth.slower mantle. Nature, 1993, 366: 13-15. [8] Rahman K M, Schneider S C, Seitz M A. Hopping and ionic conduction in Tin oxid-ebased thick-film resist or compositions. J Am Ceram Soc, 1997, 80(5): 98-202. [9] Huebner S J, Voigt D E. Electrical conductivity of diopside: evidence for oxygen vacancies. Amer Miner, 1988, 73: 1 235-1 254. [10] Constable S, Duba A. Electrical conductivity of olivine, a dunite and the mantle. J Geophys Res, 1990, 95(B1): 6 967-6 978. [11] Schock R N . Electrical conduction in olivine. J Geophys Res, 1989, 94: 5 829-5 839. [12] Peyronneau J, Poirier J P. Electrical conductivity of the earth. slower mantle. Nature, 1989, 342(30): 537-539. [13] Hirsch L M. Electrical conduction of Co2SiO4. Phys Chem Minerals, 1990, 17: 187-190. [14] Wanamaker B J, Duba A G. Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxene- buffer conditions and implications for defect equilibria. J Geophys Res, 1993, 98(B1): 489-500. [15] Bai Q, Wang Z- C, Kohlstedt D L. Manganese olivine I: electrical conductivity. Phys Chem Minerals, 1995, 22: 489-503. [16] Li X Y, Jeanloz R. High pressure-temperature electrical conductivity of magnesiow ustite as a function of iron oxide concentration. J Geophys Res, 1990, 95(B13): 21 609-21 612. [17] Wood B J, Nell J. High-temperature electrical conductivity of the lower-mantle phase (Mg, Fe) O. Nature, 1991, 351(23):309-311. [18] Li X Y, Jeanloz R. Phases and electrical conductivity of a hydrous silicate assemblage at lower-mantle conditions. Nature,1991, 350: 332-334. [19] Li X Y, Ming L C, M anghnani M - H. Pressure dependence of the electrical conductivity of (Mg0. 1 Fe0. 1) SiO3 perovskit e.J Geophys Res, 1993, 98(B1): 501-508. [20] Huebner J S, Dillenaurg G D. Impedance spectra of dry silicate minerals and rock: qualitative interpretation of spectra. Am Miner, 1995, 80: 46-64. [21] Raistrick I D, Ho C, Huggins R A. Ionic conductivity of some lithium silicates and aluminosilicates. J Electrochem Soc,1976, 123: 1 469-1 476. [22] Roberts J J, Tyburczy J A. Frequency dependent electrical properties of polycryst alline livine compacts. J Geophys Res,1991, 96(B10): 16 205- 16 222. [23] Robert s J J, Tyburczy J A . Frequency dependent electrical propertiesof dunite as functions of temperature and oxygen fugacity. Phys Chem Minerals, 1993, 19: 545-561. [24] Roberts J J, Tyburczy J A. Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport. Phys Chem Minerals, 1993, 20: 19-26. [25] Bakmann T h, Cemic L. Impedance spectroscopy and defect chemistry of fayalite. Phys Chem Minerals, 1996, 23: 186-192 . [26] Tyburczy J A, Robert s J J. Low frequency eletrical response of polycryst alline olivine compacts: grain boundary transport. J Geophys Res, 1990, 17(11): 1 985-1 988. [27] Kern H, Popp T. Thermal dehydration reactions characterised by combined measurements of electrical conductivity snd elastic wave velocities. Earth Planet Sci Lett , 1993, 120: 43-57. [28] 宋茂双, 谢鸿森, 郑海飞, 等. 1- 5G Pa 压力下蛇纹石脱水反应温度的确定——电导率方法. 科学通报, 1996, 41(5):430-433. [29] Waff H S. Theoretical consideration of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res, 1974, 79(26):4 003-4 010. [30] Watanabe T, Kurita K. The relationship between electrical conductivity and melt fraction in a partially molten system:Arche’s law behavior. Phys Earth Planet Iinter, 1993, 78: 9-17. [31] Watanabe T, Kurita K . Simultaneous measurements of the compressiona-l wave velocity and the electrical conductivity in a partially molten material. J Phys Earth, 1994, 42: 69- 87. [32] Li X Y, Mao H-K. Solid carbon at high pressure: Electrical resistivity and phase t ransition. Phys Chem Minerals, 1994, 21:1-5. [33] Lacam A. Effect of compostion and high pressures on the electrical conductivity of Fe-rich (Mg, Fe)2SiO4 olivines and spinels. Phys Chem Minerals, 1985, 12: 23-28. [34] Omura K. Change of electrical conductivity of olivine associated with the olivine-sponel transition. Phys Earth Planet Inter, 1991, 65: 292-307. |