地球科学进展 ›› 2020, Vol. 35 ›› Issue (3): 246 -258. doi: 10.11867/j.issn.1001-8166.2020.013

综述与评述 上一篇    下一篇

锂同位素地球化学在大陆地热体系研究中的应用
余小灿( ),刘成林,王春连   
  1. 中国地质科学院矿产资源研究所,自然资源部成矿作用与资源评价重点实验室,北京 100037
  • 收稿日期:2019-10-29 修回日期:2020-01-17 出版日期:2020-03-10
  • 基金资助:
    中央级公益性科研院所基本科研业务费项目“华南中新生代蒸发岩盆地卤水钾锂成矿机理”(KY1603);国家重点基础研究发展计划项目“中国陆块海相成钾规律及预测研究”(2011CB403007)

Application of Lithium Isotope Geochemistry to the Study of the Continental Geothermal System

Xiaocan Yu( ),Chenglin Liu,Chunlian Wang   

  1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2019-10-29 Revised:2020-01-17 Online:2020-03-10 Published:2020-04-10
  • About author:Yu Xiaocan (1988-), male, Jingmen City, Hubei Province, Postdoctoral fellow. Research areas include underground brine-type potassium and lithium deposits and geochemistry. E-mail: xiaocany1988@163.com
  • Supported by:
    the Central Public Welfare Scientific Research Basic Scientific Research Business Expenses “Metallogenic mechanism of potassium and lithium in brines in the Mesozoic and Cenozoic evaporite basins in South China”(KY1603);The State Key Development Program for Basic Research of China “Mineralization regularity and prediction of potash deposits of marine basins in Chinese microplate”(2011CB403007)

盐湖富锂(Li)卤水是世界锂产品的主要原材料,而大陆高盐度地热流体常含有较高浓度的Li。大陆地热体系是地热形成机理研究的重点,由于岩石的复杂性较少受到关注,且该领域Li同位素应用研究尚未得到较为系统的认识。论述了近年来Li同位素地球化学在大陆地热研究中的最新应用和进展,提出了该领域研究存在的问题,并展望了未来的研究方法与方向。大陆地热流体研究应高度重视Li-B-Sr-U多同位素方法的应用,同时也应结合不同温度条件下的水岩反应实验研究。并且,未来大陆地热体系研究更应重视各类沉积物/岩石Li同位素组成及其时空分布特征、储层岩石矿物学以及水岩反应过程中次生矿物形成时的Li同位素行为研究,以期揭示地热体系中复杂的流体演化机制,为该体系内Li资源的勘查、开发和利用提供科学的参考。

The lithium-rich brine in salt lakes is the main raw material of the world’s lithium products, while the continental geothermal fluids with a high salinity often contain a high concentration of lithium. Continental geothermal system is the focus in the study of geothermal formation mechanism. However, less attention is paid to the system due to the complexity of lithology, and the application of lithium isotopes in this field has not been systematically recognized. The newest application and progress of lithium isotope geochemistry in continental geothermal research in recent years were discussed, the problems in this field were put forward, and future research methods and directions were expected. The study of continental geothermal fluids should attach great importance to the application of Li-B-Sr-U multi-isotopic method, and should also be combined with water-rock reaction experiments under different temperature conditions. Moreover, in the future, the research on continental geothermal system should pay more attention to the various sediment/rock lithium isotopic compositions and their spatio-temporal distribution characteristics in the regional or geothermal field’s scales, mineralogy of reservoir rock, and behaviors of lithium isotopes related to the formation of secondary minerals in the process of water-rock interaction, in order to reveal the complex process of fluid evolution in the geothermal system and provide scientific reference for the exploration, exploitation and utilization of lithium resources in the system.

中图分类号: 

表1 天然水体中 Li元素含量及其同位素组成
Table 1 Concentration of lithium and its isotopic composition in natural waters
图1 大陆地热体系Li同位素组成特征
数据来源:海底热液来自参考文献[ 38 , 106 , 107 ];法国地热水来自参考文献[ 101 ];新西兰地热水来自文献[ 102 , 103 ];法属群岛地热水来自参考文献[ 38 ];美国Mono盆地地热水来自参考文献[ 100 ];南美安第斯山脉地热水来自参考文献[ 18 ];日本御岳火山地区地热水来自参考文献[ 105 ]
Fig. 1 Characteristics of lithium isotopic compositions in continental geothermal system
Data source: Submarine hydrothermal fluids from references [38,106,107]; Geothermal waters in France, New Zealand, French Islands, America, South America and Japan from references [101], [102,103], [38], [100], [18] and [105] respectively
图2 大陆地热流体与海底热液Li同位素值统计特征
数据来源:海底热液来自参考文献[ 38 , 106 , 107 ];大陆地热水来自参考文献[18,38,100~103,105]
Fig. 2 Statistical characteristics of lithium isotopic compositions in continental geothermal and submarine hydrothermal fluids
Data source: Hydrothermal fluids from references [38,106,107]; Continental geothermal waters from references [18,38,101~103,105]
1 Song Pengsheng, Xiang Renjie. Utilization and exploitation of lithium resources in salt lakes and some suggestions concerning development of Li industries in China[J]. Mineral Deposits, 20146, 33(5): 977-992.
宋彭生,项任杰. 盐湖锂资源开发利用及对中国锂产业发展的建议[J]. 矿床地质,2014,33(5):977-992.
2 Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69.
3 Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268.
4 Wang Chunlian, Huang Hua, Wang Jiuyi, et al. Geological features and metallogenic model of K- and Li-rich brine ore field in the Jiangling Depression[J]. Acta Geologica Sinica, 2018,92(8): 1 630-1 646.
王春连,黄华,王九一,等. 江陵凹陷富钾锂卤水矿田地质特征及成藏模式研究[J]. 地质学报,2018,92(8):1 630-1 646.
5 Li Jiankang, Liu Xifang, Wang Denghong. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 2014, 88(12): 2 269-2 283.
李建康,刘喜方,王登红. 中国锂矿成矿规律概要[J]. 地质学报,2014,88(12):2 269-2 283.
6 Wang Qiushu, Yuan Chunhua, Xu Hong. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine, 2015, 24(2): 10-17.
王秋舒,元春华,许虹. 全球锂资源分布与潜力分析[J]. 中国矿业,2015,24(2):10-17.
7 Liu Chenglin, Yu Xiaocan, Zhao Yanjun, et al. A tentative discussion on regional metallogenic background and mineralization mechanism of subterranean brines rich in potassium and lithium in South Chian Block[J]. Mineral Deposits, 2016, 35(6): 1 119-1 143.
刘成林,余小灿,赵艳军,等. 华南陆块液体钾锂资源的区域成矿背景与成矿作用初探[J]. 矿床地质,2016,35(6):1 119-1 143.
8 Liu Lijun, Wang Denghong, Liu Xifang,et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2): 263-278.
刘丽君,王登红,刘喜方,等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质,2017,44(2):263-278.
9 Gao Shiyang. Exploitation of lithium in salt lakes and environment[J]. Journal of Salt Lake Research, 2000, 8(1): 17-23.
高世扬. 青海盐湖锂盐开发与环境[J]. 盐湖研究, 2000, 8(1):17-23.
10 Zhao Yuanyi. Saline lake lithium resources of China and its exploitation[J]. Mineral Deposits, 2003, 22(1): 99-106.
赵元艺. 中国盐湖锂资源及其开发进程[J]. 矿床地质,2003,22(1):99-106.
11 Luo Shasha, Zheng Mianping. Exploitation actuality of saline lake lithium resources in Tibet[J]. Geology and Prospecting, 2004, 40(3): 11-14.
罗莎莎, 郑绵平. 西藏地区盐湖锂资源的开发现状[J]. 地质与勘探,2004,40(3):11-14.
12 Li Chengbao, Zhang Xiuchun. Status of development of potassium resource in Cha-er-han salt lake in Qinghai[J]. Modern Ming, 2009, (2): 16-19.
李承宝,张秀春. 青海察尔汗盐湖资源开发现状[J]. 现代盐业,2009,(2):16-19.
13 Nie Zhen, Bu Lingzhong, Zheng Mianping. Lithium resources industrialization of salt lakes in China: A case study of the Xitaijinaier salk lake and the Zhabuye salt lake[J]. Acta Geosicentica Sinica, 2010, 31(1): 95-101.
乜贞, 卜令忠, 郑绵平. 中国盐湖锂资源的产业化现状——以西台吉乃尔盐湖和扎布耶盐湖为例[J]. 地球学报,2010,31(1):95-101.
14 Bradley D B, Munk L A, Jochens H, et al. A Preliminary Deposit Model for Lithium Brines[R]. U.S. Geological Survey Open-File Report2013-1006, 2013.
15 Mernagh T P, Bastrakov E N, Jaireth S, et al. A review of Australian salt lakes and associated mineral systems[J]. Australian Journal of Earth Sciences, 2016, 63(2): 131-157.
16 Hou Xianhua, Fan Fu, Zheng Mianping, et al. Development and utilization of potash resources of saline lakes in Qinghai Province[J]. Science & Technology Review, 2017, 35(12): 67-71.
侯献华,樊馥,郑绵平,等. 青海盐湖钾盐资源开发利用及产业发展[J]. 科技导报,2017,35(12):67-71.
17 Araoka D, Kawahata H, Takagi T, et al. Lithium and strontium isotopic systematics in playas in Nevada, USA: Constraints on the origin of lithium[J]. Mineral Deposita, 2013, 49(3): 371-379.
18 Godfrey L V, Chan L H, Alonso R N, et al. The role of climate in the accumulation of lithium-rich brine in the Central Andes[J]. Applied Geochemistry, 2013, 38: 92-102.
19 Orberger B, Rojas W, Millot R, et al. Stable isotopes (Li, O, H) combined with brine chemistry: Powerful tracers for Li origins in Salar deposits from the Puna region, Agentina[J]. Procedia Earth and Planetary Science, 2015, 13: 307-311.
20 Liu X M, Rudnick R L. Lithium isotope geochemistry[J]. Review in Mineralogy & Geochemistry, 2017, 82(1): 165-217.
21 Flesch G D, Anderson A R, Svec H J. A secondary isotopic standard for 6Li/7Li determinations[J]. International Journal of Mass Spectrometry and Ion Physics, 1973, 12(3): 265-272.
22 Qi H P, Taylor P D P, Berglund M, et al. Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016[J]. International Journal of Mass Spectrometry and Ion Processes, 1997, 171(1): 263-268.
23 Chan L H, Edmond J M. Variation of lithium isotope composition in the marine environment: A preliminary report[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1 711-1 717.
24 Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans[J]. Earth Planetary and Science Letters, 1992, 108(1/2/3): 151-160.
25 Moriguti T, Nakamura E. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones[J]. Earth Planetary and Science Letters, 1998, 163(1): 167-174.
26 Tomascak P B, Ryan J G, Defant M J. Lithium isotope evidence for light element decoupling in the Panama subarc mantle[J]. Geology, 2000, 28(6): 507-510.
27 Chan L H, Leeman W P, You C F. Lithium isotopic composition of Central American volcanic arc lavas: Implications for modification of subarc mantle by slab-derived fluids: Correction[J]. Chemical Geology, 2002, 182(2): 293-300.
28 Leeman W P, Tonarini S, Chan L H, et al. Boron and lithium isotopic variations in a hot subduction zone—The southern Washington Cascades[J]. Chemical Geology, 2004, 212(1/2): 101-124.
29 Chaussidon M, Robert F. Lithium nucleosynthesis in the Sun inferred from the solar-wind 7Li/6Li ratio[J]. Nature, 1999, 402(6 759): 270-273.
30 Knauth D C, Federman S R, Lambert D L. An ultra high-resolution survey of the interstellar 7Li/6Li isotope ratio in the solar neighborhood[J]. Astrophysical Journal, 2003, 586(1): 268-285.
31 Ghezzi L, Cunha K, Smith V V, et al. Measurements of the isotopic ratio 6Li/7Li in stars with planets[J]. Astrophysical Journal, 2009, 698(3): 451-460.
32 Lind K, Melendez J, Asplund M, et al. The lithium isotopic ratio in very metal-poor stars[J]. Astronomy & Astrophysics, 2013, 554: A96.
33 Wang Qilian, Liu Congqiang, Zhao Zhiqi, et al. Lithium isotopic compositioin of the dissolved and suspended loads of the Yangtze River, China[J]. Advances in Earth Science, 2008, 23(9): 952-958.
汪齐连,刘丛强,赵志琦,等. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展,2008,23(9):952-958.
34 Wang Q L, Chetelat B, Zhao Z Q,et al. Behavior of lithium isotopes in the Changjiang River system: Sources effects and response to weathering and eosion[J]. Geochimica et Cosmochimica Acta, 2015, 151: 117-132.
35 Dellinger M, Gaillardet J, Bouchez J, et al. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 71-93.
36 Pogge von Strandmann P A E, Frings P J, Murphy M. Lithium isotope behavior during weathering in the Ganges Alluvial Plain[J]. Geochimica et Cosmochimica Acta, 2017, 198: 17-31.
37 Chan L H, Edmond J M, Thompson G A. Lithium isotope study of hot springs and metabasalts from Mid-Ocean Ridge Hydrothermal Systems[J]. Journal of Geophysical Research—Solid Earth, 1993, 98(B6): 9 653-9 659.
38 Millot R, Scaillet B, Sanjuan B. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach[J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1 852-1 871.
39 Chan L H, Leeman W P, You C F. Lithium isotopic composition of Central American Volcanic Arc lavas: Implications for modification of subare mantle by slab-derived fluids[J]. Chemical Geology, 1999, 160(4): 255-280.
40 Tang Y J, Zhang H F, Nakamura E, et al. Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: Implications for melt-rock interaction in the considerably thinned lithospheric mantle[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4 327-4 341.
41 Bottomley D J, Katz A, Chan L H, et al. The origin and evolution of Canadian Shield brines: Evaporation or freezing of seawater?New lithium isotope and geochemical evidence from the Slave craton[J]. Chemical Geology, 1999, 155(3): 295-320.
42 Bottomley D J, Chan L H, Katz A, et al. Lithium isotope geochemistry and origin of Canadian shield brines[J]. Groundwater, 2003, 41: 847-856.
43 Millot R, Négrel P, Petelet-Giraud E. Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France)[J]. Applied Geochemistry, 2007, 22(11): 2 307-2 325.
44 Millot R, Guerrot C, Innocent C, et al. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin[J]. Chemical Geology, 2011, 283(3/4): 226-241.
45 Pogge von Strandmann P A E, Porcelli D, James R H, et al. Chemical weathering processes in the Great Artesian Basin: Evidence from lithium and silicon isotopes[J]. Earth Planetary and Science Letters, 2014, 406: 24-36.
46 Nishio Y, Ijiria A, Toki T, et al. Origins of lithium in submarine mud volcano fluid in the Nankai accretionary wedge[J]. Earth Planetary and Science Letters, 2015, 414:144-155.
47 Négrel P, Millot R, Brenot A, et al. Lithium isotopes as tracers of groundwater circulation in a peat land[J]. Chemical Geology, 2010, 276(1/2): 119-127.
48 Lemarchand E, Chabaux F, Vigier N, et al. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France)[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4 612-4 628.
49 Schmitt A D, Vigier N, Lemarchand D, et al. Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: A review[J]. Comptes Rendus Geoscience, 2012, 344(11/12): 704-722.
50 Wang Xiaofeng. Classification of Geothermal Field and Geothermal Geology Characteristics in Nanyang Basin[D]. Jiaozuo: He'nan Polytechnic University, 2011.
王肖凤. 南阳盆地地热田类型划分及地热地质特征[D]. 焦作:河南理工大学,2011.
51 Guan Xin. Study on Method and Application of Economic Evaluation of Geothermal Resources[D]. Wuhan: China University of Geosciences, 2013.
关锌. 地热资源经济评价方法与应用研究[D]. 武汉:中国地质大学,2013.
52 He Zhiliang, Feng Jianyun, Zhang Ying, et al. A tentative discussion on an evaluation system of geothermal unit ranking and classification in China[J]. Earth Science Frontiers, 2017, 24(3): 168-179.
何治亮,冯建赟,张英,等. 试论中国地热单元分级分类评价体系[J]. 地学前缘,2017,24(3):168-179.
53 Guo Qinghai. Hydrogeochemistry of high-temperature geothermal systems in China: A review[J]. Applied Geochemistry, 2012, 27: 1 887-1 898.
54 Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947, (0): 562-581.
55 Schauble E A. Applying stable isotope fractionation theory to new systems[J]. Reviews in Mineralogy & Geochemistry, 2004, 55: 65-111.
56 Wunder B, Meixner A, Romer R L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120.
57 Wunder B, Deschamps F, Watenphul A, et al. The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation[J]. Contributions to Mineralogy and Petrology, 2010, 159(6): 781-790.
58 Wunder B, Meixner A, Romer R L, et al. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study[J]. Chemical Geology, 2007, 238(3): 277-290.
59 Jahn S, Wunder B. Lithium speciation in aqueous fluids at high P and T studied by ab initio molecular dynamics and consequences for Li-isotope fractionation between minerals and fluids[J]. Geochimica et Cosmochimica Acta, 2009, 73(18): 5 428-5 434.
60 Wunder B, Meixner A, Romer R L, et al. Li-isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment[J]. European Journal of Mineralogy, 2011, 23(3): 333-342.
61 Chan L H, Gieskes J M, You C F, et al. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4 443-4 454.
62 Zhang L B, Chan L H, Gieskes J M. Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin[J]. Geochimica et Cosmochimica Acta, 1988, 62(14): 2 437-2 450.
63 Pistiner J S, Henderson G M. Lithium-isotope fractionation during continental weathering processes[J]. Earth Planetary and Science Letters, 2003, 214(1/2): 327-339.
64 Rudnick R L, Tomascak P B, Njo H B, et al. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J]. Chemical Geology, 2004, 212(1/2): 45-57.
65 Vigier N, Decarreau A, Millot R, et al. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 780-792.
66 Wimpenny J, Colla C A, Yu P, et al. Lithium isotope fractionation during uptake by gibbsite[J]. Geochimica et Cosmochimica Acta, 2015, 168: 133-150.
67 Williams L B, Hervig R L. Lithium and boron isotopes in illite-smectite: The importance of crystal size[J]. Geochimica et Cosmochimica Acta, 2005, 69(24): 5 705-5 716.
68 Rudnick R L, Ionov D A. Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid-rock reaction[J]. Earth Planetary and Science Letters, 2007, 256(1/2): 278-293.
69 Qian Q, O’Neill H S C, Hermann J. Comparative diffusion coefficients of major and trace elements in olivine at ~950℃ from a xenocryst included in dioritic magma[J]. Geology, 2010, 38: 331-334.
70 Cahalan R C, Kelly E D, Carlson W D. Rates of Li diffusion in garnet: Coupled transport of Li and Y plus REEs[J]. American Mineralogists, 2014, 99(8/9): 1 676-1 682.
71 Richter F, Watson B, Chaussidon M, et al. Lithium isotope fractionation by diffusion in minerals. Part 1: Pyroxenes[J]. Geochimica et Cosmochimica Acta, 2014, 126: 352-370.
72 Parkinson I J, Hammond S J, James R H, et al. High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems[J]. Earth Planetary and Science Letters, 2007, 257(3/4): 609-621.
73 Dohmen R, Kasemann S A, Coogan L, et al. Diffusion of Li in olivine. Part I: Experimental observations and a multi species diffusion model[J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 274-292.
74 Bourg I C, Sposito G. Molecular dynamics simulations of kinetic isotope fractionation during the diffusion of ionic species in liquid water[J]. Geochimica et Cosmochimica Acta, 2007, 71(23): 5 583-5 589.
75 Bindeman I N, Lundstrom C C, Bopp C, et al. Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks[J]. Earth Planetary and Science Letters, 2013, 365: 51-62.
76 Richter F M, Watson E B, Chaussidon M, et al. Isotope fractionation of Li and K in silicate liquids by Soret diffusion[J]. Geochimica et Cosmochimica Acta, 2014, 138: 136-145.
77 Ko?ler J, Ku?era M, Sylvester P. Precise measurementof Li isotopes in planktonic foraminiferal tests by quadrupole ICPMS[J]. Chemical Geology, 2001, 181(1/2/3/4): 169-179.
78 Chan L H. Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate[J]. Analytical Chemistry, 1987, 59(22): 2 662-2 665.
79 Moriguti T, Nakamura E. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples[J]. Chemical Geology, 1998, 145(1): 91-104.
80 Tomascak P B, Carlson R W, Shirey S B. Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS[J]. Chemical Geology, 1999, 158(1): 145-154.
81 Jeffcoate A B, Elliott T, Thomas A, et al. Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 161-172.
82 Magna T, Wiechert U H, Halliday A N. Low-blank separation and isotope ratio measurement of small samples of lithium using multiple-collector ICPMS[J]. International Journal of Mass Spectrometry, 2004, 239(1): 67-76.
83 Millot R, Guerrot C, Vigier N. Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28(1):153-159.
84 Kasemann S A, Jeffcoate A B, Elliott T. Lithium isotope composition of basalt glass reference material[J]. Analytical Chemistry, 2005, 77(16): 5 251-5 257.
85 Jochum K P, Stoll B, Herwig K. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios[J]. Geochemistry Geophysics Geosystems, 2006, 7(2).DOI:10.1029/2005GC001060.
doi: 10.1029/2005GC001060    
86 Wheat J A. Isotopic analysis of lithium by atomic absorption spectrophotometry[J]. Applied Spectroscopy, 1971, 25(3): 328-330.
87 W?lfle R, Neubert A. Determination of isotopic composition of lithium by neutron activation analysis; comparison with mass spectrometry[J]. Journal of Radioanalytical and Nuclear Chemistry, 1977, 39(1): 375-384.
88 Suryanarayana M V, Sankari M, Gangadharan S, et al. Determination of 6Li/7Li isotope ratio using two photon resonance three photon resonance ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1998, 173(3): 177-189.
89 You C F, Chan L H. Precise lithium isotopic composition in low concentration natural samples[J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 909-915.
90 Sahoo S K, Masuda A. Precise determination of lithium isotopic composition by thermal ionization mass spectrometry in natural samples such as seawater[J]. Analytica Chimica Acta, 1998, 370(2): 215-220.
91 Huh Y, Chan L H, Zhang L, et al. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2 039-2 051.
92 Millot R, Petelet-Giraud E, Guerrot C, et al. Multi-isotopic composition (δ7Li-δ11B-δD-δ18O) of rain waters in France: Origin and spatio-temporal characterization[J]. Applied Geochemistry, 2010, 25(10): 1 510-1 524.
93 Xiao Yingkai, Qi Haiping, Wang Yunhui, et al. Lithium isotopic compositions of brine, sediments and source water in Da Qaidam Lake, Qinghai, China[J]. Geochimica, 1994, 23(4): 329-338.
肖应凯,祁海平,王蕴慧,等. 青海柴达木湖卤水、沉积物和水源中锂同位素组成[J]. 地球化学,1994,23(4):329-338.
94 Bensimon M, Bourquin J, Parriaux A. Determination of ultra-trace elements in snow samples by inductively-coupled plasma source sector field mass spectrometry using ultrasonic nebulization[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(6): 731-734.
95 Ikegawa M, Kimura M, Honda K. Geographical variations of major and trace elements in East Antarctica[J]. Atmospheric Environment, 1999, 33(9): 1 457-1 467.
96 He Maoyong, Luo Chongguang, Yang Hongjun, et al. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes[J]. Ore Geology Reviews, 2019. DOI:10.1016/j.oregeorev.2019.103277.
doi: 10.1016/j.oregeorev.2019.103277    
97 Munk L A, Hynek S A, Bradley D C, et al. Lithium brines: A global perspective[J]. Reviews in Economic Geology, 2016, 18: 339-365.
98 Pan Yuandun, Liu Chenglin, Xu Haiming. Characteristics and formation of potassium-bearing brine in the deeper strata in depression in Hubei Jiangling Province[J]. Geology of Chemical Minerals, 2011, 33(2): 66-72.
潘源敦,刘成林,徐海明. 湖北江陵凹陷深层高温富钾卤水特征及其成因探讨[J]. 化工矿产地质,2011,33(2):66-72.
99 Liu Chenglin. Characteristics and formation of potash deposits in continental rift basins: A review[J]. Acta Geoscientica Sinica, 2013, 34(5): 515-527.
刘成林. 大陆裂谷盆地钾盐矿床特征与成矿作用[J]. 地球学报,2013,34(5):515-527.
100 Tomascak P B, Hemming N G, Hemming S R. The lithium isotopic composition of waters of the Mono Basin, California[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 601-611.
101 Millot R, Négrel P. Multi-isotopic tracing (δ7Li, δ11B, 87Sr/86Sr) and chemical geothermometry: Evidence from hydro-geothermal systems in France[J]. Chemical Geology, 2007, 244(3/4): 664-678.
102 Millot R, Hegan A, Négrel P. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization[J]. Applied Geochemistry, 2012, 27(3): 677-688.
103 Bernal N F, Gleeson S A, Dean A S, et al. The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island, New Zealand[J]. Geochimica et Cosmochimica Acta, 2014, 126: 265-283.
104 Sturchio N C, Chan L H. Lithium isotope geochemistry of the Yellowstone hydrothermal system[J]. Society of Economic Geologists, Special Publication, 2003, 10: 171-180.
105 Nishio Y, Okamura K, Tanimizu M, et al. Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan: Implications for deep-seated fluids and earthquake swarms[J]. Earth Planetary and Science Letters, 2010, 297(3/4): 567-576.
106 Foustoukos D I, James R H, Berndt M E, et al. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge[J]. Chemical Geology, 2004, 212(1/2):17-26.
107 Verney-Carron A, Vigier N, Millot R, et al. Lithium isotopes in hydrothermally altered basalts from Hengill (SW Iceland)[J]. Earth Planetary and Science Letters, 2015, 411: 62-71.
108 Sanjuan B, Millot R, Ch Innocent, et al. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation[J]. Chemical Geology, 2016, 428: 27-47.
109 Pogge von Strandmann P A E, Burton K W, Opfergelt S, et al. The effect of hydrothermal spring weathering processes and primary productivity on lithium isotopes: Lake Myvatn, Iceland[J]. Chemical Geology, 2016, 445: 4-13.
110 Chen Moxiang. Distribution and exploitation of geothermal resources in China[J]. Resources Science, 1991, (5): 40-46.
陈墨香. 中国地热资源的分布及其开发利用[J]. 资源科学,1991,(5):40-46.
111 Mizutani Y, Rafter T A. Oxygen isotopic composition of sulphates, part 3: Oxygen isotopic fractionation in the bisulfate ion-water system[J]. New Zealand Journal of Sciences, 1969, 12: 54-59.
112 Fournier R O, Truesdell A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1 255-1 275.
113 Fournier R O, Potter R W. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochimica et Cosmochimica Acta, 1979, 43(9): 1 543-1 550.
114 Kharaka Y K, Lico M S, Law L M. Chemical geothermometers applied to formation waters, gulf of Mexico and California Basins[J]. The American Association of Petroleum Geologists Bulltein, 1982, 66(5): 588.
115 Giggenbach W F, Gonfiantini R, Jangi B L, et al. Isotopic and chemical compositions of Parbati Valley geothermal discharges, Northwest Himalaya, India[J]. Geothermics, 1983, 12(2/3): 199-222.
116 Giggenbach W F. Geothermal solute equilibria.Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2 749-2 765.
117 Michard G. Behaviour of major elements and some trace elements (Li, Rb, Cs, Fe, Mn, W, F) in deep hot waters from granitic areas[J]. Chemical Geology, 1990, 89(1/2): 117-134.
118 Négrel P, Millot R, Guerrot G, et al. Heterogeneities and interconnections in groundwaters: Coupled B, Li and stable-isotope variations in a large aquifer system (Eocene Sand aquifer, Southwestern France)[J]. Chemical Geology, 2012, 296/297: 83-95.
119 Tomascak P B. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences[J]. Reviews of Mineralogy and Geochemistry, 2004, 55:153-195.
120 Verney-Carron A, Vigier N, Millot R. Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering[J]. Geochimica et Cosmochimca Acta, 2011, 75(12): 3 452-3 468.
121 Blavoux B, Olive P. Radiocarbon dating of groundwater of the aquifer confined in the Lower Triassic sandstones of the Lorraine region, France[J]. Journal of Hydrology, 1981, 54(1/2/3): 167-183.
122 Andrews J N, Giles I S, Kay R L F, et al. Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden[J]. Geochimica et Cosmochimica Acta, 1982, 46(9): 1 533-1 543.
123 Kimblin R T. The chemistry and origin of groundwater in Triassic sandstone and Quaternary deposits, northwest England and some UK comparisons[J]. Journal of Hydrology, 1995, 172(1/2/3/4): 293-311.
124 Vengosh A, Gill J, Davisson M L, et al. A multi-isotope (B, Sr, O, H, and C) and age dating (3H-3He and 14C) study of groundwater from Salinas Valley, California: Hydrochemistry, dynamics, and contamination process[J]. Water Resources Research, 2002, 38(1): 1-17.
125 Gu Hongbiao, Chi Baoming, Wang He, et al. Relationship between surface water and groundwater in the Liujiang Basin-Hydrochemical constrains[J]. Advances in Earth Science, 2017, 32(8): 789-799.
谷洪彪,迟宝明,王贺,等. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展,2017,32(8):789-799.
126 Osmond J K, Cowart J B. The theory and uses of natural uranium isotopic variations in Hydrology[J]. Atomic Energy Reviews, 1976, 14(4): 621-679.
127 Ivanovitch M, Frohlich K, Hendry M J. Uranium-series radionuclides in fluids and olids from the Milk River aquifer, Alberta, Canada[J]. Applied Geochemistry, 1991, 6(4): 405-418.
128 Ch Innocent, Kloppmann W, Millot R, et al. U isotope systematics of groundwaters from the Triassic aquifer of the northeastern Paris Basin and of the Rhine Graben, France[J]. Procedia Earth and Planetary Science, 2015, 13: 112-115.
129 Pinti D L, Marty B. Noble gases in crude oils from the Paris Basin, France: Implications for the origin of fluids and constraints on oil-water-gas interactions[J]. Geochimica et Cosmochimica Acta, 1995, 59(16):3 389-3 404.
130 Li Ruiqin, Liu Chenglin, Jiao Pengcheng, et al. The tempo-spatial characteristics and forming mechanism of lithium-rich brines in China[J]. China Geology, 2018, 1(1): 72-83.
131 Wang Xiaoyao, Zeng Lianbo, Wei Hehua. Research progress of the fractured-vuggy reservoir zones in carbonate reservoir[J]. Advances in Earth Science, 2018, 33(8): 818-832.
王小垚,曾联波,魏荷花. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展,2018,33(8):818-832.
[1] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[2] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[3] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[4] 汪齐连,刘丛强,赵志琦,B.Chetelat,丁虎. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958.
[5] 杜建国,刘连柱,康春丽. 地震活动中地壳深部流体的作用研究进展[J]. 地球科学进展, 1997, 12(5): 416-421.
阅读次数
全文


摘要