地球科学进展 ›› 2020, Vol. 35 ›› Issue (2): 111 -123. doi: 10.11867/j.issn.1001-8166.2020.016

综述与评述    下一篇

包气带—含水层地下水污染风险评估研究进展
覃荣高 1, 3( ),邱仁敏 1,黎明 2( ),曹广祝 1,王金生 3,仵彦卿 4   
  1. 1.昆明理工大学国土资源与工程学院地球科学系,云南 昆明 650093
    2.生态环境部环境工程 评估中心,北京 100012
    3.北京师范大学水科学研究院,北京 100875
    4.上海交通大学环境科学与工程学院,上海 200240
  • 收稿日期:2019-09-29 修回日期:2020-01-02 出版日期:2020-02-10
  • 通讯作者: 黎明 E-mail:qinronggao@126.com;liming@acee.org.cn
  • 基金资助:
    国家自然科学基金项目“红黏土非饱和带—岩溶非均质含水层地下水污染概率风险分析及其数学模型研究”(41867031);“岩溶—裂隙含水层地下水重金属迁移机理研究”(41562012)

Review of Study on Groundwater Contamination Risk Assessment in Vadose Zone-Aquifer

Ronggao Qin 1, 3( ),Renmin Qiu 1,Ming Li 2( ),Guangzhu Cao 1,Jinsheng Wang 3,Yanqing Wu 4   

  1. 1.Department of Earth Sciences, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
    2.Appraisal Centre for Environmental and Engineering, Ministry of Ecology and Environment, Beijing 100012, China
    3.College of Water Sciences, Beijing Normal University, Beijing 100875, China
    4.School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-09-29 Revised:2020-01-02 Online:2020-02-10 Published:2020-03-24
  • Contact: Ming Li E-mail:qinronggao@126.com;liming@acee.org.cn
  • About author:Qin Ronggao (1982-), male, Laibin County, Guangxi Province, Associate professor. Research areas include remediation and simulation of contaminant transport in soil and groundwater. E-mail: qinronggao@126.com
  • Supported by:
    the National Natural Science Foundation of China “Probabilistic risk analysis and mathematical model studies of groundwater contamination in the red clay unsaturated zone- karst heterogeneous aquifers”(41867031);“Transport mechanism of heavy metal in karst-fracture groundwater aquifer”(41562012)

包气带—含水层作为地表水和地下水之间水循环和溶质迁移的重要介质,是地球科学领域中的研究热点。以包气带—含水层中地下水污染风险评估为综述对象,从包气带—含水层地下水污染现状出发,总结了包气带—含水层的污染现状、表征、渗流与溶质迁移及其影响关键参数研究等方面的进展,最后分析包气带—含水层地下水污染风险评估存在的问题及今后的研究方向,指出尤其应重点考虑基于逾渗阈值开展地下水污染风险评估研究。

The vadose zone-aquifer is an important media for water circulation and solute transport in soil, surface water and groundwater. It is a research hotspot in the field of earth science. In this paper, we took the groundwater contamination risk assessment for the vadose zone-aquifers as the review object. The groundwater contamination status of vadose zone-aquifers was pointed out. The characterization of vadose zone-aquifers, the flow and solute transport as well as the key effect parameters were systematically analyzed and the research progresses were reviewed. Finally, the existing problems in the groundwater contaminant risk assessment under the condition of different scales of vadose zone-aquifers and future research direction were pointed out from the perspective of groundwater contaminant risk assessment. In particular, more attention should be paid to the groundwater contamination risk assessment based on percolation threshold.

中图分类号: 

图1 天然条件和人类活动条件下包气带—含水层地下水中各组分之间发生还原反应示意图(据参考文献[ 28 ]修改)
Fig.1 Diagram of reduction reactions between components in vadose zone-aquifer groundwater under natural condition as well as human-induced evolution (modified after reference[ 28 ])
图2 不同污染场地泄漏条件下特征污染物羽状物在包气带—含水层地下水中的迁移情景图(据参考文献[ 120 ]修改)
Fig.2 Contaminant transport from a source located in the vadose zone, downward to the top of the unconfned aquifer and then horizontal transport in the aquifers (modified after reference [ 120 ])
1 Qiu J. China faces up to groundwater crisis[J]. Nature, 2010,466(7 304): 308.
2 Zheng C, Liu J. China's "Love Canal" moment?[J]. Science, 2013,340(6 134): 810.
3 Tai Tuoya, Wang Jinsheng, Wang Yeyao, et al. Groundwater pollution risk assessments in China [J]. Journal of Beijing Normal University (Natural Science), 2012,48(6): 648-653.
邰托娅, 王金生, 王业耀, 等. 我国地下水污染风险评价方法研究进展[J]. 北京师范大学学报:自然科学版, 2012,48(6): 648-653.
4 Yu Yong, Zhai Yuanzheng, Guo Yongli, et al. Risk assessment of groundwater pollution based on uncertainty [J]. Hydrogeology & Engineering Geology, 2013,40(1): 115-123.
于勇, 翟远征, 郭永丽, 等. 基于不确定性的地下水污染风险评价研究进展[J]. 水文地质工程地质, 2013,40(1): 115-123.
5 Zhang Bo, Li Guoxiu, Cheng Pin, et al. Groundwater environment risk assessment based on stochastic theory [J]. Advances in Water Science, 2016,27(1): 100-106.
张博, 李国秀, 程品, 等. 基于随机理论的地下水环境风险评价[J]. 水科学进展, 2016,27(1): 100-106.
6 Fiori A, Bellin A, Cvetkovic V, et al. Stochastic modeling of solute transport in aquifers: From heterogeneity characterization to risk analysis[J]. Water Resources Research, 2015,51(8): 6 622-6 648.
7 Kumar P. Hydrocomplexity: Addressing water security and emergent environmental risks[J]. Water Resources Research, 2015,51(7): 5 827-5 838.
8 Garabedian S P, LeBlanc D R, Gelhar L W, et al. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 2. Analysis of spatial moments for a nonreactive tracer[J]. Water Resources Research, 1991,27(5): 911-924.
9 Binley A, Hubbard S S, Huisman J A, et al. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales[J]. Water Resources Research, 2015,51(6): 3 837-3 866.
10 Pereira Nunes J P, Blunt M J, Bijeljic B. Pore-scale simulation of carbonate dissolution in micro-CT images[J]. Journal of Geophysical Research: Solid Earth, 2016,121(2): 558-576.
11 Robins V, Saadatfar M, Delgado-Friedrichs O, et al. Percolating length scales from topological persistence analysis of micro-CT images of porous materials[J]. Water Resources Research, 2016,52(1): 315-329.
12 Kitanidis P K. The concept of the Dilution Index[J]. Water Resources Research, 1994,30(7): 2 011-2 026.
13 Chiogna G, Hochstetler D L, Bellin A, et al. Mixing, entropy and reactive solute transport[J]. Geophysical Research Letters, 2012,39(20): L20405. DOI:10.1029/2012GL053295.
doi: 10.1029/2012GL053295    
14 de Barros F P J, Dentz M, Koch J, et al. Flow topology and scalar mixing in spatially heterogeneous flow fields[J]. Geophysical Research Letters, 2012,39(8): L08404. DOI:10.1029/2012GL051302.
doi: 10.1029/2012GL051302    
15 Le Borgne T, Dentz M, Villermaux E. Stretching, coalescence, and mixing in Porous Media[J]. Physical Review Letters, 2013,110(20): 204 501.
16 Dentz M, de Barros F P J. Mixing-scale dependent dispersion for transport in heterogeneous flows[J]. Journal of Fluid Mechanics, 2015,777: 178-195.
17 Le Borgne T, Dentz M, Villermaux E. The lamellar description of mixing in porous media[J]. Journal of Fluid Mechanics, 2015,770: 458-498.
18 Lester D R, Dentz M, Le Borgne T. Chaotic mixing in three-dimensional porous media[J]. Journal of Fluid Mechanics, 2016,803: 144-174.
19 Soltanian M R, Ritzi R W, Dai Z, et al. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach[J]. Chemosphere, 2015,122: 235-244.
20 Soltanian M R, Ritzi R W, Huang C C, et al. Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance[J]. Water Resources Research, 2015,51(3): 1 601-1 618.
21 Xie S, Wen Z, Jakada H. A new model approach for reactive solute transport in dual-permeability media with depth-dependent reaction coefficients[J]. Journal of Hydrology, 2019,577: 123 946.
22 Dagan G, Fiori A, Jankovic I. Upscaling of flow in heterogeneous porous formations: Critical examination and issues of principle[J]. Advances in Water Resources, 2013,51: 67-85.
23 Norouzi A, Pourvari S, Arns C H. Image-based relative permeability upscaling from the pore scale[J]. Advances in Water Resources, 2016,95: 161-175.
24 Tyukhova A R, Willmann M. Conservative transport upscaling based on information of connectivity[J]. Water Resources Research, 2016,52(9): 6 867-6 880.
25 Aguilar-Madera C G, Herrera-Hernández E C, Espinosa-Paredes G. Solute transport in heterogeneous reservoirs: Upscaling from the Darcy to the reservoir scale[J]. Advances in Water Resources, 2019,124: 9-28.
26 Rajaram H. Debates—Stochastic subsurface hydrology from theory to practice: Introduction[J]. Water Resources Research, 2016,52(12): 9 215-9 217.
27 Dong W, Xie W, Su X, et al. Review: Micro-organic contaminants in groundwater in China[J]. Hydrogeology Journal, 2018,26(5): 1 351-1 369.
28 Jia Y, Xi B, Jiang Y, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of the Total Environment, 2018,643: 967-993.
29 Teng Y, Hu B, Zheng J, et al. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China[J]. Hydrogeology Journal, 2018,26(5): 1 591-1 607.
30 Zhao Wenzhi, Zhou Hong, Liu Hu. Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics [J]. Advances in Earth Science, 2017,32(9): 908-918.
赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017,32(9): 908-918.
31 Wang Wenke, Gong Chengcheng, Zhang Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions [J]. Advances in Earth Science, 2018,33(7): 702-718.
王文科, 宫程程, 张在勇, 等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018,33(7): 702-718.
32 Wang Y, Zheng C, Ma R. Review: Safe and sustainable groundwater supply in China[J]. Hydrogeology Journal, 2018,26(5): 1 301-1 324.
33 Wang Sijia, Liu Hu, Zhao Wenzhi, et al. Groundwater sustainability in arid and semi-arid environments: A review [J]. Advances in Earth Science, 2019,34(2): 210-223.
王思佳, 刘鹄, 赵文智, 等. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019,34(2): 210-223.
34 Yeh T-C J, Simunek J. Stochastic fusion of information for characterizing and monitoring the vadose zone[J]. Vadose Zone Journal, 2002,1(2): 207-221.
35 Hou Z S, Rubin Y. On minimum relative entropy concepts and prior compatibility issues in vadose zone inverse and forward modeling[J]. Water Resources Research, 2005,41(12): W12425. DOI:10.1029/2005WR004082.
doi: 10.1029/2005WR004082    
36 Vereecken H, Huisman J A, Bogena H, et al. On the value of soil moisture measurements in vadose zone hydrology: A review[J]. Water Resources Research, 2008,44(4). DOI:10.1029/2008WR006829.
doi: 10.1029/2008WR006829    
37 Arora B, Dwivedi D, Faybishenko B, et al. Understanding and predicting vadose zone processes [M]//Reactive Transport in Natural and Engineered Systems. Berlin, Boston: De Gruyter, 2019.
38 Merritt A J, Chambers J E, Wilkinson P B, et al. Measurement and modelling of moisture—Electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy[J]. Journal of Applied Geophysics, 2016,124: 155-165.
39 Wehrer M, Binley A, Slater L D. Characterization of reactive transport by 3-D Electrical Resistivity Tomography (ERT) under unsaturated conditions[J]. Water Resources Research, 2016,52(10): 8 295-8 316.
40 Kotikian M, Parsekian A D, Paige G, et al. Observing heterogeneous unsaturated flow at the hillslope scale using time-lapse electrical resistivity tomography[J]. Vadose Zone Journal, 2019,18(1): 180 138.
41 Koltermann C E, Gorelick S M. Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches[J]. Water Resources Research, 1996,32(9): 2 617-2 658.
42 Ritzi R W, Dai Z X, Dominic D F, et al. Spatial correlation of permeability in cross-stratified sediment with hierarchical architecture[J]. Water Resources Research, 2004,40(3): W03513.DOI:10.1029/2003WR002420.
doi: 10.1029/2003WR002420    
43 Pirot G, Renard P, Huber E, et al. Influence of conceptual model uncertainty on contaminant transport forecasting in braided river aquifers[J]. Journal of Hydrology, 2015,531: 124-141.
44 Neuman S P, Di Federico V. Multifaceted nature of hydrogeologic scaling and its interpretation[J]. Reviews of Geophysics, 2003,41(3): 1 014.
45 Zarlenga A, Jankovic I, Fiori A. Advective transport in heterogeneous formations: The impact of spatial anisotropy on the breakthrough curve[J]. Transport in Porous Media, 2013,96(2): 295-304.
46 Di Dato M, de Barros F P J, Fiori A, et al. Effects of the hydraulic conductivity microstructure on macrodispersivity[J]. Water Resources Research, 2016,52(9): 6 818-6 832.
47 Finkel M, Grathwohl P, Cirpka O A. A travel-time based approach to model kinetic sorption in highly heterogeneous porous media via reactive hydrofacies[J]. Water Resources Research, 2016,52(12): 9 390-9 411.
48 Yang Jinzhong, Cai Shuying, Huang Guanhua, et al. Stochastic Theory of Water and Solute Transport in Porous Media [M]. Beijing: Science Press, 2000.
杨金忠, 菜树英, 黄冠华, 等. 多孔介质中水分及溶质迁移的随机理论[M]. 北京: 科学出版社, 2000.
49 Wu Jichun, Lu Le. Uncertainty analysis for groundwater modeling [J]. Journal of Nanjing University(Natural Sciences), 2011,(3): 227-234.
吴吉春, 陆乐. 地下水模拟不确定性分析[J]. 南京大学学报:自然科学版, 2011,(3): 227-234.
50 Zhou Haiyan. Characterizing Non-Gaussian Aquifer Model Parameters Based on the Ensemble Kalman Filter [D]. Beijing: China University of Geosciences (Beijing), 2012.
周海燕. 基于集合卡尔曼滤波法的非高斯含水层参数识别[D].北京:中国地质大学(北京), 2012.
51 Qin Ronggao, Cao Guangzhu, Wu Yanqing. Review of the study of groundwater flow and solute transport in heterogeneous aquifer [J]. Advances in Earth Science, 2014,29(1): 30-41.
覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014,29(1): 30-41.
52 You Mingyu, Qin Ronggao, Cao Guangzhu, et al. Heterogeneous distribution of the aquifer sediments in an alluvial fan of Dali, Yunnan [J]. Geology and Exploration, 2016,52(4): 734-742.
由明宇, 覃荣高, 曹广祝, 等. 大理冲积扇含水层非均质性分布规律研究[J]. 地质与勘探, 2016,52(4): 734-742.
53 Kechavarzi C, Soga K, Illangasekare T H. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone[J]. Journal of Contaminant Hydrology, 2005,76(3/4): 211-233.
54 Demirkanli D I, Molz F J, Kaplan D I, et al. A fully transient model for long-term plutonium transport in the Savannah River Site vadose zone: Root water uptake[J]. Vadose Zone Journal, 2008,7(3): 1 099-1 109.
55 Peng W, Quinlan P, Tartakovsky D M. Effects of spatio-temporal variability of precipitation on contaminant migration in the vadose zone[J]. Geophysical Research Letters, 2009,36(12): L12404.
56 Faybishenko B,Witherspoon P A,Doughty C,et al. Multi-scale investigations of liquid flow in a fractured basalt vadose zone[M]//Evans D D, Nicholson T J, Rassmusen T. Flow and Transport Through Unsaturated Fractured Rock. Washington DC: American Geophysical Union,2013:161-182.
57 Orozco-Lopez E, Munoz-Carpena R, Gao B, et al. Riparian vadose zone preferential flow: Review of concepts, limitations, and perspectives[J]. Vadose Zone Journal, 2018,17(1). DOI:10.2136/vzj2018.02.0031.
doi: 10.2136/vzj2018.02.0031    
58 Tang Haihang, Su Yishen, Liu Bingao. Laboratory study for influence of air on the infiltration flow in the soil unsaturated zone [J]. Advances in Water Science, 1995,6(4): 263-269.
唐海行, 苏逸深, 刘炳敖. 土壤包气带中气体对入渗水流运动影响的实验研究[J]. 水科学进展, 1995,6(4): 263-269.
59 Yang Yonggang, Li Guoqin, Jiao Wentao, et al. Migration process of soil water in the unsaturated zone of the Loess Plateau [J]. Advances in Water Science, 2016,27(4): 529-534.
杨永刚, 李国琴, 焦文涛, 等. 黄土高原丘陵沟壑区包气带土壤水运移过程[J]. 水科学进展, 2016,27(4): 529-534.
60 Chen Zifang, Zhao Yongsheng, Sun Jiaqiang, et al. Study on the migration and release of lead and chromium and in the vadose zone [J]. China Environmental Science, 2014,34(9): 2 211-2 216.
陈子方, 赵勇胜, 孙家强, 等. 铅和铬污染包气带及再释放规律的实验研究[J]. 中国环境科学, 2014,34(9): 2 211-2 216.
61 Wang Xiaodan, Feng Wei, Wang Wenke, et al. Migrating and transforming rule of nitrogen in unsaturated zone in Guanzhong basin based on HYDRUS-1D model [J]. Geological Survey and Research, 2015,38(4): 291-298, 304.
王小丹, 凤蔚, 王文科, 等. 基于HYDRUS-1D模型模拟关中盆地氮在包气带中的迁移转化规律[J]. 地质调查与研究, 2015,38(4): 291-298, 304.
62 Zhao Kefeng, Wang Jinguo, Huang Qian, et al. Study on migration rate of LNAPL in vadose zone [J]. Geotechnical Investigation & Surveying, 2016,44(3): 34-41.
赵科锋, 王锦国, 黄倩, 等. 包气带中轻非水相流体运移速率的研究[J]. 工程勘察, 2016,44(3): 34-41.
63 Meng Xiangshuai, Wu Mengmeng, Chen Honghan, et al. Vertical pollution characteristics and sources of polycyclic aromatic hydrocarbons in a heterogeneous unsaturated zone under a coking plant [J]. Environmental Science, 2020,41(1): 377-384.
孟祥帅, 吴萌萌, 陈鸿汉, 等. 某焦化场地非均质包气带中多环芳烃(PAHs)来源及垂向分布特征[J]. 环境科学, 2020,41(1): 377-384.
64 Heidari P, Li L. Solute transport in low-heterogeneity sandboxes: The role of correlation length and permeability variance[J]. Water Resources Research, 2014,50(10): 8 240-8 264.
65 Yang M, Annable M D, Jawitz J W. Solute source depletion control of forward and back diffusion through low-permeability zones[J]. Journal of Contaminant Hydrology, 2016,193: 54-62.
66 Tyukhova A R, Willmann M. Connectivity metrics based on the path of smallest resistance[J]. Advances in Water Resources, 2016,88: 14-20.
67 Bijeljic B, Mostaghimi P, Blunt M J. Insights into non-Fickian solute transport in carbonates[J]. Water Resources Research, 2013,49(5): 2 714-2 728.
68 Li Guangquan, Gao Yang, Zhao Bei. Laboratory inversion for wall solute fluxes from breakthrough curves [J]. Geological Journal of China Universities, 2011,17(4): 546-551.
李光泉, 高阳, 赵蓓. 穿透曲线反演管壁溶质通量的实验研究[J]. 高校地质学报, 2011,17(4): 546-551.
69 Chen Yudao, Cheng Yaping, Wang Heng, et al. Quantitative tracing study of hydraulic and geometric parameters of a karst underground river: Exemplified by the Zhaidi underground river in Guilin [J]. Hydrogeology and Engineering Geology, 2013,40(5): 11-15.
陈余道, 程亚平, 王恒, 等. 岩溶地下河管道流和管道结构及参数的定量示踪——以桂林寨底地下河为例[J]. 水文地质工程地质, 2013,40(5): 11-15.
70 Gallegos J J, Hu B X, Davis H. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP[J]. Hydrogeology Journal, 2013,21(8): 1 749-1 760.
71 Dentz M, Le Borgne T, Englert A, et al. Mixing, spreading and reaction in heterogeneous media: A brief review[J]. Journal of Contaminant Hydrology, 2011,120/121: 1-17.
72 Liu Y, Illangasekare T H, Kitanidis P K. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals[J]. Journal of Contaminant Hydrology, 2014,157: 11-24.
73 Henri C V, Fernandez-Garcia D, de Barros F P J. Probabilistic human health risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk statistics, hot spots, and preferential channels[J]. Water Resources Research, 2015,51(6): 4 086-4 108.
74 Ye Y, Chiogna G, Cirpka O A, et al. Experimental investigation of transverse mixing in porous media under helical flow conditions[J]. Physical Review E, 2016,94(1): 013113.
75 Le Borgne T, Huck P D, Dentz M, et al. Scalar gradients in stirred mixtures and the deconstruction of random fields[J]. Journal of Fluid Mechanics, 2017,812: 578-610.
76 Cvetkovic V, Fiori A, Dagan G. Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer[J]. Journal of Hydrology, 2016,543: 101-108.
77 Russo D, Zaidel J, Laufer A. Numerical analysis of flow and transport in a combined heterogeneous vadose zone-groundwater system[J]. Advances in Water Resources, 2000,24(1): 49-62.
78 Russo D, Fiori A. Equivalent vadose zone steady state flow: An assessment of its capability to predict transport in a realistic combined vadose zone-groundwater flow system[J]. Water Resources Research, 2008,44(9): W09436. DOI:10.1029/2007WR006170.
doi: 10.1029/2007WR006170    
79 Russo D, Fiori A. Stochastic analysis of transport in a combined heterogeneous vadose zone-groundwater flow system[J]. Water Resources Research, 2009,45: W03426. DOI:10.1029/2008WR007157.
doi: 10.1029/2008WR007157    
80 Russo D. Effect of pulse release date and soil characteristics on solute transport in a combined vadose zone-groundwater flow system: Insights from numerical simulations[J]. Water Resources Research, 2011,47: W05532. DOI:10.1029/2008WR007157.
doi: 10.1029/2008WR007157    
81 Murray C J, Zachara J M, McKinley J P, et al. Establishing a geochemical heterogeneity model for a contaminated vadose zone—Aquifer system[J]. Journal of Contaminant Hydrology, 2013,153: 122-140.
82 Akbariyeh S, Bartelt-Hunt S, Snow D, et al. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux[J]. Journal of Contaminant Hydrology, 2018,211: 15-25.
83 Beegum S, ?im?nek J, Szymkiewicz A, et al. Implementation of Solute Transport in the Vadose Zone into the “HYDRUS Package for MODFLOW”[J]. Groundwater, 2019,57(3): 392-408.
84 Broadbent S R, Hammersley J M. Percolation processes: I. Crystals and mazes[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1957,53(3): 629-641.
85 Feng Zengchao, Zhao Yangsheng, Zhaoxing Lü. Research on laws of 2D percolation of fully random distribution fracture media [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Suppl.2): 3 904-3 908.
冯增朝, 赵阳升, 吕兆兴. 强随机分布裂隙介质的二维逾渗规律研究[J]. 岩石力学与工程学报, 2006,25(增刊2): 3 904-3 908.
86 Liu Shengli, Feng Huixia, Zhang Jianqiang, et al. The research of percolation theory and application [J]. Applied Chemical Industry, 2010, 39(7): 1 074-1 078.
刘生丽, 冯辉霞, 张建强, 等. 逾渗理论的研究及应用进展[J]. 应用化工, 2010,39(7): 1 074-1 078.
87 Ghanbarian B, Ioannidis M A, Hunt A G. Theoretical insight into the empirical tortuosity-connectivity factor in the burdine-brooks-corey water relative permeability model[J]. Water Resources Research, 2017,53(12): 10 395-10 410.
88 Hunt A G, Flow Sahimi M., transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective medium approximation[J]. Reviews of Geophysics, 2017,55. DOI: 10.1002/2017RG000558.
doi: 10.1002/2017RG000558    
89 Hunt A G. Upscaling in subsurface transport using cluster statistics of percolation[J]. Transport in Porous Media, 1998,30(2): 177-198.
90 Hunt A G. Applications of percolation theory to porous media with distributed local conductances[J]. Advances in Water Resources, 2001,24(3/4): 279-307.
91 Hunt A G, Gee G W. Water-retention of fractal soil models using continuum percolation theory: Tests of hanford site soils[J]. Vadose Zone Journal, 2002,1(2): 252-260.
92 Hunt A G. Comparing van Genuchten and percolation theoretical formulations of the hydraulic properties of unsaturated media[J]. Vadose Zone Journal, 2004,3(4): 1 483-1 488.
93 Hunt A G. Percolation theory and the future of hydrogeology[J]. Hydrogeology Journal, 2005,13(1): 202-205.
94 Sahimi M. Characterization of pore space connectivity: Percolation theory[M]//Flow and Transport in Porous Media and Fractured Rock. Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 15-37.
95 Ghanbarian-Alavijeh B, Hunt A G. Unsaturated hydraulic conductivity in porous media: Percolation theory[J]. Geoderma, 2012,187: 77-84.
96 Hunt A, Ewing R, Ghanbarian B. Percolation Theory for Flow in Porous Media.Lecture Notes in Physics 880[M]. Heidelberg, Germany:Springer-Verlag, 2014.
97 Geistlinger H, Ataei-Dadavi I, Mohammadian S, et al. The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media: Comparison with percolation theory[J]. Water Resources Research, 2015,51(11): 9 094-9 111.
98 Tavagh-Mohammadi B, Masihi M, Ganjeh-Ghazvini M. Point-to-point connectivity prediction in porous media using percolation theory[J]. Physica A: Statistical Mechanics and Its Applications, 2016,460: 304-313.
99 Ghanbarian B, Hunt A G. Improving unsaturated hydraulic conductivity estimation in soils via percolation theory[J]. Geoderma, 2017,303: 9-18.
100 Koestel J, Dathe A, Skaggs T H, et al. Estimating the permeability of naturally structured soil from percolation theory and pore space characteristics imaged by X-ray[J]. Water Resources Research, 2018,54(11): 9 255-9 263.
101 Zarlenga A, de Barros F P J, Fiori A. Uncertainty quantification of adverse human health effects from continuously released contaminant sources in groundwater systems[J]. Journal of Hydrology, 2016,541: 850-861.
102 Bolster D, Barahona M, Dentz M, et al. Probabilistic risk analysis of groundwater remediation strategies[J]. Water Resources Research, 2009,45: W06413. DOI:10.1029/2008WR007551.
doi: 10.1029/2008WR007551    
103 Shi Liangsheng, Tang Yunqing, Yang Jinzhong. Risk assessment of groundwater contamination based on stochastic collocation method [J]. Advances in Water Science, 2012,23(4): 529-538.
史良胜, 唐云卿, 杨金忠. 基于随机配点法的地下水污染风险评价[J]. 水科学进展, 2012,23(4): 529-538.
104 Shi L, Zeng L, Tang Y, et al. Uncertainty quantification of contaminant transport and risk assessment with conditional stochastic collocation method[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(6): 1 453-1 464.
105 de Barros F P J, Fiori A. First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: Theoretical analysis and implications for human health risk assessment[J]. Water Resources Research, 2014,50(5): 4 018-4 037.
106 Zhang D, Shi L, Chang H, et al. A comparative study of numerical approaches to risk assessment of contaminant transport[J]. Stochastic Environmental Research and Risk Assessment, 2010,24(7): 971-984.
107 Cirpka O A, de Barros F P J, Chiogna G, et al. Probability density function of steady state concentration in two-dimensional heterogeneous porous media[J]. Water Resources Research, 2011,47(11): W11523. DOI:10.1029/2011WR010750.
doi: 10.1029/2011WR010750    
108 Li G, Loper D E. Transport, dilution, and dispersion of contaminant in a leaky karst conduit[J]. Transport in Porous Media, 2011,88(1): 31-43.
109 Zech A, Attinger S, Cvetkovic V, et al. Is unique scaling of aquifer macrodispersivity supported by field data?[J]. Water Resources Research, 2015,51(9): 7 662-7 679.
110 Dentz M, Carrera J. Effective dispersion in temporally fluctuating flow through a heterogeneous medium[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2003,68(32): 363 101-3 631 018.
111 Bellin A, Tonina D. Probability density function of non-reactive solute concentration in heterogeneous porous formations[J]. Journal of Contaminant Hydrology, 2007,94(1/2): 109-125.
112 De Barros F P J, Bolster D, Sanchez-Vila X, et al. A divide and conquer approach to cope with uncertainty, human health risk, and decision making in contaminant hydrology[J]. Water Resources Research, 2011,47(5): W05508. DOI: 10.1029/2010WR009954.
doi: 10.1029/2010WR009954    
113 Zhang X, Huang G H. Assessment of BTEX-induced health risk under multiple uncertainties at a petroleum-contaminated site: An integrated fuzzy stochastic approach[J]. Water Resources Research, 2011,47: W12533. DOI:10.1029/2011WR010682.
doi: 10.1029/2011WR010682    
114 Cvetkovic V, Molin S. Combining numerical simulations with time-domain random walk for pathogen risk assessment in groundwater[J]. Advances in Water Resources, 2012,36: 98-107.
115 Siirila E R, Maxwell R M. A new perspective on human health risk assessment: Development of a time dependent methodology and the effect of varying exposure durations[J]. Science of the Total Environment, 2012,431: 221-232.
116 Tartakovsky D M, Nowak W, Bolster D. Introduction to the special issue on uncertainty quantification and risk assessment[J]. Advances in Water Resources, 2012,36: 1-2.
117 Siirila-Woodburn E R, Fernandez-Garcia D, Sanchez-Vila X. Improving the accuracy of risk prediction from particle-based breakthrough curves reconstructed with kernel density estimators[J]. Water Resources Research, 2015,51(6): 4 574-4 591.
118 Wang Y Y, Huang G H, Wang S, et al. A risk-based interactive multi-stage stochastic programming approach for water resources planning under dual uncertainties[J]. Advances in Water Resources, 2016,94: 217-230.
119 Libera A, Henri C V, de Barros F P J. Hydraulic conductivity and porosity heterogeneity controls on environmental performance metrics: Implications in probabilistic risk analysis[J]. Advances in Water Resources, 2019,127: 1-12.
120 Locatelli L, Binning P J, Sanchez-Vila X, et al. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites[J]. Journal of Contaminant Hydrology, 2019,221: 35-49.
121 Ministry of Ecology and Environment of the People's Republic of China.Technical Guidelines for Environmental Impact Assessment—Groundwater Environment:HJ610-2016[S].Beijing:Ministry of Ecology and Environment of the People's Republic of China,2016.
中华人民共和国生态环境部. 环境影响评价技术导则地下水环境:HJ610-2016[S].北京:中华人民共和国生态环境部,2016.
122 Wang Renmin, Mei Xiangyang, Qin Ronggao, et al. Groundwater contamination risk analysis for karst aquifer with thick unsaturated zone [J]. Value Engineering, 2019,38(12): 135-139.
王仁敏, 梅向阳, 覃荣高, 等. 含巨厚非饱和带岩溶含水层地下水污染风险分析[J]. 价值工程, 2019,38(12): 135-139.
123 Xu T, Gómez-Hernández J J. Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering[J]. Water Resources Research, 2016,52(8): 6 587-6 595.
124 Zhao Y, Lu W, Xiao C. A Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sources[J]. Journal of Contaminant Hydrology, 2016,185/186: 51-60.
125 Vesselinov V V, Alexandrov B S, O’Malley D. Contaminant source identification using semi-supervised machine learning[J]. Journal of Contaminant Hydrology, 2018,212: 134-142.
126 Xu T, Gómez-Hernández J J. Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter[J]. Advances in Water Resources, 2018,112: 106-123.
127 Dai Z X, Zhan C J, Soltanian M R, et al. Identifying spatial correlation structure of multimodal permeability in hierarchical media with Markov chain approach[J]. Journal of Hydrology, 2019,568: 703-715.
128 Kollat J B, Reed P M, Maxwell R M. Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics[J]. Water Resources Research, 2011,47(2): W02529. DOI:10.1029/2010WR009194.
doi: 10.1029/2010WR009194    
129 Reed P M, Kollat J B. Visual analytics clarify the scalability and effectiveness of massively parallel many-objective optimization: A groundwater monitoring design example[J]. Advances in Water Resources, 2013,56: 1-13.
130 Reed P M, Hadka D, Herman J D, et al. Evolutionary multiobjective optimization in water resources: The past, present, and future[J]. Advances in Water Resources, 2013,51: 438-456.
131 Sun Caizhi, Chen Xiangtao, Chen Xuejiao, et al. Recent advances in groundwater contamination risk assessment [J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 152-161.
孙才志, 陈相涛, 陈雪姣, 等. 地下水污染风险评价研究进展[J].水利水电科技进展,2015, 35(5): 152-161.
[1] 黄存瑞, 王琼. 气候变化健康风险评估、早期信号捕捉及应对策略研究[J]. 地球科学进展, 2018, 33(11): 1105-1111.
[2] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[3] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[4] 覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展 *[J]. 地球科学进展, 2014, 29(1): 30-41.
[5] 张强, 韩兰英, 张立阳, 王劲松. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
[6] 石先武,谭骏,国志兴,刘钦政. 风暴潮灾害风险评估研究综述[J]. 地球科学进展, 2013, 28(8): 866-874.
[7] 方伟华,石先武. 面向灾害风险评估的热带气旋路径及强度随机模拟综述[J]. 地球科学进展, 2012, 27(8): 866-875.
[8] 周瑶,王静爱. 自然灾害脆弱性曲线研究进展[J]. 地球科学进展, 2012, 27(4): 435-442.
[9] 杜新强,冶雪艳,路莹,迟宝明,Steffen Birk,杨悦锁. 地下水人工回灌堵塞问题研究进展[J]. 地球科学进展, 2009, 24(9): 973-980.
[10] 周创兵,李典庆. 暴雨诱发滑坡致灾机理与减灾方法研究进展[J]. 地球科学进展, 2009, 24(5): 477-487.
阅读次数
全文


摘要