Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (6): 596-605    DOI: 10.11867/j.issn.1001-8166.2019.06.0596
综述与评述     
最大熵增地表蒸散模型:原理及应用综述
WangJingfeng1,2,刘元波3(),张珂1
1. 河海大学水文水资源与水利工程科学国家重点实验室,江苏 南京 210024
中国科学院南京地理与湖泊研究所,江苏 南京 210008
The Maximum Entropy Production Approach for Estimating Evapotranspiration: Principle and Applications
Jingfeng Wang1,2,Yuanbo Liu3(),Ke Zhang1
1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China
2. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
 全文: PDF(730 KB)   HTML
摘要:

精确估算地表蒸散一直是地球系统科学中的难点问题。经典的蒸散模型大多建立在水汽输送及能量平衡约束等基础上,相关的基础理论研究进展缓慢。最大熵增地表蒸散(E-MEP)模型是在综合借鉴贝叶斯概率论、信息熵概念、非平衡态热力学理论和大气边界层湍流相似性理论的基础上,建立的全新地表蒸散理论框架,克服了经典模型的主要缺陷,包括:离散梯度模型不满足能量守恒条件,Penman模型针对饱和土壤,Penman-Monteith模型需要率定经验参数等。E-MEP模型具有3个显著特点: 同时给出地表(包括水面、雪面和冰面)蒸散量、感热通量和介质表面热通量,且在所有时间空间尺度上满足能量平衡方程; 模型公式中没有可调经验参数,不依赖于温度梯度和水汽梯度变量,不需要输入风速和表面粗糙度; 适用于任何土壤含水量和植被覆盖条件。由于E-MEP模型建立在坚实的数学物理基础上,并具有解析表达式,简单易用,其输入变量和模型参数少于传统蒸散模型使用。地表辐射、表面温度、表面比湿等模型输入变量易于实地观测获取,且可通过遥感反演获得。检验分析表明,E-MEP模型优于Penman和Penman-Monteith等传统蒸散模型。这一全新的地表蒸散模型已被用于大尺度地表水热的遥感反演和过程监测,并用于改进气候模式的参数化方案。

关键词: 最大熵增模型地表蒸散贝叶斯概率论地表过程模型遥感反演    
Abstract:

This review introduces a novel method for modeling evapotranspiration and surface heat fluxes built on the theory of Maximum Entropy Production (MEP) as an application of the maximum entropy principle to non-equilibrium thermodynamic systems. The formulation of the MEP model uses the Bayesian probability theory, information theory through the concept of information entropy, and the similarity theory of the atmospheric boundary-layer turbulence. The MPE model provides simultaneous solution of latent, sensible and surface medium heat fluxes using only three input variables: net radiation, surface temperature and specific humidity. A unique feature of the MEP model is that the surface energy balance is closed at a range of space and time scales. The model does not require data of temperature and water vapor gradient, wind speed and surface roughness. It does not include empirical tunable parameters such as atmospheric and stomatal conductance. The MEP model is a promising new approach for the study of water and energy cycles of the Earth system across space-time scales.

Key words: Maximum entropy production    Surface evapotranspiration    Bayesian probability theory    Surface processes    Remote sensing retrieval.
收稿日期: 2018-09-04 出版日期: 2019-07-05
ZTFLH:  P426.2  
基金资助: 河海大学水文水资源及水利工程科学国家重点实验室开放基金“中国水循环演变的多尺度指数分析研究”(2017490311);国家自然科学基金项目“含迟滞效应的非参数化蒸散计算方法研究”(51879255)
通讯作者: 刘元波     E-mail: ybliu@niglas.ac.cn
作者简介: Wang Jingfeng(1963-),男,北京人,副教授,主要从事水文气象学理论与应用研究. E-mail:jingfeng.wang@ce.gatech.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
WangJingfeng
刘元波
张珂

引用本文:

WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.

Jingfeng Wang,Yuanbo Liu,Ke Zhang. The Maximum Entropy Production Approach for Estimating Evapotranspiration: Principle and Applications. Advances in Earth Science, 2019, 34(6): 596-605.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.06.0596        http://www.adearth.ac.cn/CN/Y2019/V34/I6/596

1 Henderson-Sellers A , Yang Z , Dickinson R . The project for intercomparison of land-surface parameterization schemes [J]. Bulletin of the American Meteorological Society, 1993, 74 (7): 1 335-1 349.
2 Wang J , Salvucci G , Bras R . An extremum principle of evaporation [J]. Water Resources Research, 2004, 40(9): W09303. DOI:10.1029/2004WR003087 .
doi: 10.1029/2004WR003087
3 Wang J , Bras R , Lerdau M , et al . A maximum hypothesis of transpiration [J]. Journal of Geophysical Research—Biogeosciences, 2007, 112(G3). DOI:10.1029/2006JG000255 .
doi: 10.1029/2006JG000255
4 Wang J , Bras R . Ground heat flux estimated from surface soil temperature [J]. Journal of Hydrology, 1999, 216(3/4): 214-226.
5 Wang Z , Bou-Zeid E . A novel approach for the estimation of soil ground heat flux [J]. Agricultural and Forest Meteorology, 2012, 154/155: 214-221.
6 Lu P , Liu Y , Hiyama T . Linking surface temperature based approaches for estimating soil heat flux with error propagation [J]. Atmosphere and Climate Science, 2012, 4(1): 29-41.
7 Jaynes E , Bretthorst G . Probability Theory—The Logic of Science [M]. New York: Cambridge University Press, 2003.
8 Bayes R . An essay toward solving a problem in the doctrine of chances [J]. Philosophical Transactions of the Royal Society, 1763,53:370-418.
9 Bernoulli J . Ars Conjectandi [M]. Basel: Thurnisiorum, 1713.
10 Laplace P . Mémoire sur la probabilité des causes par les événements[J]. Mémoires de l'Académie Royale des Sciences, 1774, 6: 621-656.
11 Cox R . Probability, frequency, and reasonable expectation [J]. American Journal of Physics, 1946, 14(1): 1-13.
12 Polya G . Mathematics and Plausible Reasoning [M]. New Jersey: Princeton University Press, 1954.
13 Jaynes E . Information theory and statistics mechanics [J]. Physical Review, 1957, 106(4): 620-630.
14 Shannon C . A mathematical theory of communication [J]. Bell System Technical Journal, 1948, 27(3): 379-423.
15 Tribus M . Thermostatics and Thermodynamics—An Introduction to Energy, Information and States of Matters, with Engineering Applications [M]. New Jersey: Van Nostrand Reinhold, 1961.
16 Paltridge G . Global dynamics and climate—A system of minimum entropy exchange [J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(429): 475-484.
17 Ozawa H , Ohmura A , Lorenz R , et al . The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle [J]. Review of Geophysics, 2003, 41(4): 1 018.
18 Kleidon A , Fraedrich K . Biotic entropy production and global atmosphere-biosphere interaction [M]//Kleidon A, Lorenz R,eds. Non-equilibrium Thermodynamics and the Production of Entropy. Heidelberg: Springer, 2004: 173-189.
19 Juretic D , Zupanovic P . Photosynthetic models with maximum entropy production in irreversible charge transfer steps [J]. Computational Biology and Chemistry, 2003, 27(6): 541-553.
20 Dewar R . Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states [J]. Journal of Physics A: Mathematical and General, 2003, 36(3): 631-641.
21 Dewar R . Maximum entropy production and the fluctuation theorem [J]. Journal of Physics A: Mathematical and General, 2005, 38(21): L371-L381.
22 Dewar R , Maritan A . A theoretical basis for maximum entropy production [M]//Dewar R,ed. Beyond the Second Law: Entropy Production and Non-Equilibrium Systems. Berlin Heidelberg: Springer, 2014: 49-71.
23 Kleidon A , Schymanski S . Thermodynamics and optimality of the water budget on land: A review [J]. Geophysical Research Letters, 2008, 35(20). DOI:10.1029/2008GL035393 .
doi: 10.1029/2008GL035393
24 Wang J , Bras R . A model of surface heat fluxes based on the theory of maximum entropy production [J]. Water Resources Research, 2009, 45(11). DOI:10.1029/2009WR007900 .
doi: 10.1029/2009WR007900
25 Monin A , Obukhov A . Basic turbulence mixing laws in the atmospheric surface layer [J]. Trudy Geologicheskogo Instituta Akademiya Nauk, Svaz Sovetskych Socialistickych Republik, 1954, 24(151): 163-187.
26 Wang J , Bras R . An extremum solution of the Monin-Obukhov similarity equations [J]. Journal of Atmospheric Science, 2010, 67(2): 485-499.
27 Edelfsen N , Anderson B . Thermodynamics of soil moisture [J]. Hilgardia, 1943, 15 (2): 31-298.
28 Wang J , Bras R . A model of evapotranspiration based on the theory of maximum entropy production [J]. Water Resources Research, 2011, 47(3). DOI:10.1029/2010WR009392 .
doi: 10.1029/2010WR009392
29 Huang S , Wang J . A coupled force-restore model of surface temperature and soil moisture using the maximum entropy production model of heat fluxes [J]. Journal of Geophysical Research-Atmosphere, 2016, 121(13): 7 528-7 547.
30 Hajji I , Nadeau D , Music B , et al . Application of the maximum entropy production model of evapotranspiration over partially vegetated water-limited land surfaces [J]. Journal of Hydrometeorology, 2018, 19(6): 989-1 005.
31 Priestley C . Turbulent Transfer in the Lower Atmosphere[M]. Chicago: University of Chicago Press, 1959.
32 Hajji I , Nadeau D , Music B , et al . Maximum Entropy Production Model of water vapor fluxes over a seasonal snowpack [J]. Journal of Hydrology,2019,in review.
33 Wang J , Bras R , Nieves V , et al . A model of energy budgets over water, snow and ice surfaces [J]. Journal of Geophysical Research—Atmosphere, 2014, 119(10): 6 034-6 051.
34 Li Zhiwei , Yang Dawen , Lei Huimin . Evapotranspiration model based on the maximum entropy production principle [J]. Journal of Tsinghua University(Science and Technology), 2012, 52(6): 785-790.
34 李志威,杨大文,雷慧闽 .基于最大熵增原理的蒸发蒸腾量模型应用[J]. 清华大学学报:自然科学版, 2012, 52(6): 785-790.
35 Wang H , Tetzlaff D , Soulsby C . Testing the maximum entropy production approach for estimating evapotranspiration from closed canopy shrub land in a low‐energy humid environment [J]. Hydrological Processes, 2017, 31(25): 4 613-4 621.
36 Xu D , Agee E , Wang J , et al . Estimation of evapotranspiration of Amazon rainforest using the maximum entropy production method [J]. Geophysical Research Letters, 2019, 46(3): 1 402-1 412.
37 McMahon T , Peel M , Lowe L , et al . Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis [J]. Hydrology and Earth Systtem Sciences, 2013, 17(4): 1 331-1 363.
38 Huang S , Deng Y , Wang J . Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes [J]. Climate Dynamics, 2017, 49(5/6): 1 531-1 545.
39 Nearing G , Moran M , Scott R , et al . Coupling diffusion and maximum entropy models to estimate thermal inertia [J]. Remote Sensing Environment, 2012, 119: 222-231.
40 Chen J , Deng Y , Wang J , et al . Hindcasting the Madden-Julian oscillation with a new parameterization of surface heat fluxes [J]. Journal of Advances in Modeling Earth Systems, 2017, 9(7): 2 696-2 709.
[1] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[2] 肖登攀, 陶福禄, Moiwo Juana P. 全球变化下地表反照率研究进展[J]. 地球科学进展, 2011, 26(11): 1217-1224.
[3] 温健婷,张霞,张兵,赵冬. 土壤铅含量高光谱遥感反演中波段选择方法研究[J]. 地球科学进展, 2010, 25(6): 625-629.
[4] 陶欣,范闻捷,王大成,闫彬彦,徐希孺. 植被FAPAR的遥感模型与反演研究[J]. 地球科学进展, 2009, 24(7): 741-747.