地球科学进展 ›› 2016, Vol. 31 ›› Issue (10): 1090 -1104. doi: 10.11867/j.issn.1001-8166.2016.10.1090

上一篇    

中国全球业务化海洋学预报系统的发展和应用
王辉 1, 2( ), 万莉颖 1, 2, 秦英豪 1,,A; *( ), 王毅 1, 杨学联 1, 刘洋 1, 邢建勇 1, 陈莉 1, 王彰贵 1, 仉天宇 1, 刘桂梅 1, 杨清华 1, 吴湘玉 1, 刘钦燕 3, 王东晓 3   
  1. 1.国家海洋环境预报中心,北京 100081
    2.国家海洋局海洋灾害预报技术研究重点实验室,国家海洋环境预报中心,北京 100081
    3.热带海洋环境国家重点实验室,中国科学院南海海洋研究所,广东 广州 510301
  • 收稿日期:2016-07-10 修回日期:2016-09-12 出版日期:2016-10-20
  • 通讯作者: 秦英豪 E-mail:wangh@nmefc.gov.cn;qinyh@nmefc.gov.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目“热带太平洋三种增暖事件次表层海温演变特征及机理研究”(编号:41406042);热带海洋环境国家重点实验室(中国科学院南海海洋研究所)开放课题项目“全球海洋资料同化系统在热带太平洋三种不同海水增暖事件中盐度变化特征分析”(编号:LTO1303)资助

Development and Application of the Chinese Global Operational Oceanography Forecasting System

Hui Wang 1, 2( ), Liying Wan 1, 2, Yinghao Qin 1, *( ), Yi Wang 1, Xuelian Yang 1, Yang Liu 1, Jianyong Xing 1, Li Chen 1, Zhanggui Wang 1, Tianyu Zhang 1, Guimei Liu 1, Qinghua Yang 1, Xiangyu Wu 1, Qinyan Liu 3, Dongxiao Wang 3   

  1. 1.National Marine Environmental Forecasting Center,Beijing 100081, China
    2.Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing 100081, China
    3.State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Received:2016-07-10 Revised:2016-09-12 Online:2016-10-20 Published:2016-10-20
  • Contact: Yinghao Qin E-mail:wangh@nmefc.gov.cn;qinyh@nmefc.gov.cn
  • About author:

    First author:Wang Hui(1962-), male,Suixi City, Anhui Province, Professor. Research areas include ocean forecasting, operational oceanography and ocean dynamics.E-mail:wangh@nmefc.gov.cn

    *Corresponding author:Qin Yinghao(1983-), male, Jiaozuo City, Henan Province,Associate professor. Research areas include data assimilation, numerical simulation and ocean forecasting.E-mail:qinyh@nmefc.gov.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Spatial and temporal variability of sub-surface temperature in the three kinds of Pacific Ocean warming events and associated dynamic mechanisms”(No.41406042);The State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology Chinese Academy of Sciences “Salinity variability in the three kinds of Pacific Ocean warming events using a global ocean data assimilation system”(No.LTO1303)

中国全球业务化海洋学预报系统是国家海洋环境预报中心在国内首次构建的全球—大洋—近海3级嵌套的全球业务化海洋学预报系统体系,系统稳定高效业务运行,通过多种方式实时提供和发布全球多尺度多要素的海流、海浪、海温、海冰、海面风场等预报产品,实现了全球海域范围内从百公里级到公里级空间分辨率的一体化预报业务全覆盖。全球业务化海洋学预报系统从全球尺度、大洋尺度到中国周边海域包括8个子系统:全球海面风场数值预报子系统、全球海洋环流数值预报子系统、全球海浪数值预报子系统、全球潮汐潮流数值预报子系统、印度洋海域海洋环境数值预报子系统、极地海冰数值预报子系统、中国周边海域精细化海洋环境数值预报子系统、全球海洋环境预报业务化集成支撑子系统。该系统紧密结合我国经济社会发展和军事保障需求,在“雪龙号”极地遇险脱困预报保障、马航MH370失联飞机搜救预报保障、“蛟龙号”多次深潜海试预报保障、日本福岛“3.11”地震海啸核泄漏影响评估等重大事件的预报保障任务中发挥了至关重要的作用,为我国实施海洋强国战略,维护国家海洋权益、保障涉海安全生产、应对海上突发事件等提供有力的科技支撑。

Chinese Global operational Oceanography Forecasting System (CGOFS) is configured in three levels of nested grids from global ocean, open ocean to offshore. This global operational oceanography forecasting system architecture is firstly bulit in China by the National Marine Environmental Forecasting Center (NMEFC). It has been put into operational forecasting at NMEFC, providing real-time forecasting of multi-scale ocean current, temperature, salinity, wave, sea surface wind, etc. All the ocean forecasting products are released in many ways and made available through the online, realizing full-range coverage in resolution from hundreds kilometer to several kilometer. The CGOFS includes 8 subsystems: global sea-surface wind numerical forecasting subsystem, global ocean circulation numerical forecasting subsystem, global ocean wave numerical forecasting subsystem, global tide and tidal current forecasting subsystem, Indian Ocean marine environment numerical forecasting subsystem, polar sea ice numerical forecasting subsystem, refined marine environment numerical forecasting for China’s surrounding waters,and integration management subsystem for operational support service of the CGOFS. Operational applications of the CGOFS are closely connected with China’s economic-social development and military security needs. For example, the CGOFS palys a crucial role in environmental forecasting for Chinese research vessel and icebreaker Xuelong, MH370 Searching, submersible “Jiaolong” exploration and nuclear contaminant transport from Fukushima Daiichi nuclear power plant, providing important scientific support for developing an ocean power, protecting national maritime rights, ensuring marine safety and coping with ocean problems in emergency.

中图分类号: 

表1
Table 1 The global and regional operational oceanography forecasting system
系统名称 海洋模式 模式区域 水平分辨率 垂直层数 同化方案 预报时效 大气强迫
美国海军
GOFSv3.0
HYCOM 全球 1/12° 32层 NCODA-3DVAR 7 d 海军全球环境模式
NAVGEM
美国NCEP
RTOFS
HYCOM 全球 1/12° 32层 NCODA-3 DVAR 8 d NCEP GFS 3-hourly,
HWRF (Hurricane WRF)
北大西洋 1/12°,美国近岸
4~6 km
26层 2DVAR(horizontal)
1 DVAR (Vertical)
6 d
法国
(Mecator-Ocean)
NEMO 全球 1/12° 50层 SAM2-3DVar,基于SEEK方
程的降阶卡尔曼滤波对温
度和盐度作误差订正
14 d ECMWF 3 hourly
分析场和预报场
北大西洋+
地中海
20°S~80°N 50层 7 d
欧洲
ECMWF
NEMO3.0 全球 1°,赤道加密 42层 NEMOVAR (3DVar-FGAT) 51成员集合预报,18 d (每天),
32 d (每周), 7 mon (每月)
ECMWF
业务数值预报场
英国
FOAMv12
NEMO 全球 1/4° 75层 NEMOVAR (3DVar-FGAT) 7 d Met Office 3-hourly
数值天气预报
北大西洋、印度洋、
地中海
1/12° 50层
澳大利亚
Bluelink OFAM3
MOM4 准全球
75°S~75°N
1/10° 51层 BODASv8.3 7 d ACCESS-G, APS1
ERA-Interim
日本
MOVE/MRI.COM
MRI.COM v3.4 全球 54层 3DVAR 30 d(西北太平洋) JRA55-JCDAS 6 hourly
北太平洋 1/2° 54层
西北太平洋 1/10° 26层 4DVAR
加拿大
CONCEPTS
NEMO3.1 全球 1/4° 50层 海洋 SAM2
海冰 3DVAR-FGAT
10 d GEM (Canadian Meteorological
Centre) hourly
北极、北大西洋 1/12°
印度
INDOFOS
MOM4
ROMS
全球 0.5°×(0.33°~1°) 40 z层 3DVAR 5 d GFS 6 hourly
印度洋 1/8° 40 σ层 OI NCMRWF 6 hourly
巴西
REMO
HYCOM 大西洋 1/4° 21层 集合OI 6 d NCEP GFS 0.5° 3 hourly
CHM -COSMO 0.1° 3 hourly
南大西洋 1/12° 5 d
西南大西洋 1/24° 4 d
图1 全球业务化海洋学预报系统区域子系统海区覆盖图
红色实线为印度洋海洋环流数值预报子系统,红色点线为印度洋海浪数值预报子系统,黑色实线为西北太平洋海洋环流数值预报子系统,黑色点线为西北太平洋海浪数值预报子系统,绿色实线为中国近海海浪数值预报子系统,青色实线为南海海洋环流数值预报子系统,品红实线为渤、黄、东海海洋环流数值预报子系统
Fig.1 Spatial domains for the regional forecasting systems of Chinese Global operational Oceanography Forecasting System
The red solid lines indicate Indian Ocean circulation numerical forecasting subsystem, red dotted lines indicate Indian Ocean wave numerical forecasting subsystem, black solid lines indicate Northwest Pacific Ocean circulation numerical forecasting subsystem, black dotted lines indicate Northwest wave numerical forecasting subsystem, green solid lines indicate China offshore wave numerical forecasting subsystem, cyan solid lines indicate South China Sea circulation numerical forecasting subsystem, magenta solid lines indicate Bohai Sea, Yellow Sea and East China Sea circulation numerical forecasting subsystem
表2
Table 2 Chinese Global operational Oceanography Forecasting System(CGOFS)
CGOFS
三级结构
CGOFS
子系统名称
数值
模式
模式区域 模式地形 水平
分辨率
垂直层数 大气
强迫
同化
方案
同化
资料
预报
时效
/h
预报要素
全球尺度 全球海面风场
数值预报子系统
GSM 全球 USGS
DEM
T382 sigma混合
坐标/64层
NMEFC & GFS
6-hourly
GSI
3DVAR
常规观测
卫星辐射
120 海面风场
海面温度
全球海洋环流
数值预报子系统
MOM4 全球 OCCAM 0.2 1/4° Z坐标
50层
NMEFC & GFS
6-hourly
3DVAR SST SLA
Argo廓线
120 温度 盐度
海流
全球海浪
数值预报子系统
NWW3 全球 TerrainBase
1/12°
1/3° NMEFC & GFS
6-hourly
OI HY-2 120 有效波高
平均波向
全球潮汐潮流
数值预报子系统
FVCOM 全球 DBDB5 1/6°
~0.9°
sigma混合
坐标/40层
NMEFC & GFS
6-hourly
Nudging Jason2 120 水位
流场
大洋尺度 印度洋海洋环流
数值预报子系统
ROMS 39°~125°E
5°S~27°N
GEBCO_08
0.5'
1/12° 20层 NMEFC
6-hourly
EnOI SST
SLA
120 温度 盐度
海流
印度洋海浪
数值预报子系统
NWW3 30°~122°E
15°S~27°N
TerrainBase
1/12 °
1/6° NMEFC
6-hourly
OI HY-2 120 有效波高
平均波向
极地海冰
数值预报子系统
MITgcm 北极区域
开边界在大西洋和太平洋55°N附近
ETOPO2 18 km 50层 GFS
6-hourly
Nudging SSMIS
AMSR2
120 海冰密集度
中国
周边海域
中国近海海洋环流
数值预报子系统
ROMS 渤、黄、东海
22°~41°N, 114°~133°E
南海4.5°S~28.4°N ,99°~145°E
GEBCO_08 0.5' 1/30° 渤黄东海
30层
南海36层
NMEFC
6-hourly
EnOI SST SLA
Argo
廓线
120 温度 盐度
海流
中国近海海浪
数值预报子系统
SWAN 5°~45°N
105°~130°E
ETOPO2 1/30° NMEFC
6-hourly
120 有效波高
平均波向
西北太平洋海洋环
流数值预报子系统
ROMS 3°~52°N
99°~158°E
GEBCO_08
0.5'
1/20° 22层 NMEFC & GFS
6-hourly
EnOI SST
SLA
120 温度 盐度
海流
西北太平洋海浪
数值预报子系统
SWAN 5°~45°N
105°~155°E
ETOPO2 1/10° NMEFC
6-hourly
120 有效波高
平均波向
图2 全球业务化海洋学预报系统框架流程图
Fig.2 The flow chart of Chinese Global operational Oceanography Forecasting System
图3 全球海洋流场流线可视化效果对比 [ 82 ]
Fig.3 Comparison of global marine fluid flow streamline visualization [ 82 ]
图4 极地大气数值预报系统对“雪龙”号所在位置风向风速的预报示意图 [ 83 ]
Fig.4 Wind tendency to the location of the R/V Xuelong from PWNFS [ 83 ]
图5 铯-137表层浓度的模式预测 [ 86 ]
(a)第二年,(b)第8年
Fig.5 Model predictions of Cs-137 surface concentration [ 86 ]
(a) 2 nd year; (b) 8 th year
[1] Schiller A, Brasssington G B.Operational Oceanography in the 21st Century[M]. Netherland: Springer, 2011.
[2] Intergovernmental Oceanographic Commission (IOC),United Nations Educational, Scientific and Cultural Organization(UNESCO). Technical Report on Scoping of Operational Oceanography[R]. IOC/INF-1291 Paris, 2012.
[3] Woods J D, Dahlin H, Droppert L, et al.The Strategy for EuroGOOS[R]. EuroGOOS publication No.1, Southampton Oceanography Centre, ISBN 0-904175-22-7, Southampton, 1996.
[4] Pinardi N, Woods J.Ocean Forecasting: Conceptual Basis and Applications[M].Berlin:Springer Verlag, 2002.
[5] Pinardi N, Coppini G.Preface “Operational oceanography in the Mediterranean Sea: The second stage of development”[J]. Ocean Science, 2010, 6(1):263-267.
[6] Wang Hui.Scientific Frontier for Ocean Forecasting and Operational Oceanography[R]. Beijing:The 459th Xiangshan Science Conferences (XSSC), 2013.
[王辉. 全球海洋预报前沿和业务化海洋学[R]. 北京:第459次香山科学会议,2013.]
[7] Bell M J, Lefèbvre M, Le Traon P Y, et al. GODAE: The global ocean data assimilation experiment[J]. Oceanography, 2009, 22(3):14-21.
[8] Bell M J, Schiller A, Le Traon P Y, et al. An introduction to GODAE OceanView[J]. Journal of Operational Oceanography, 2015, 8(Suppl.1):2-11.
[9] Martin M J, Balmaseda M, Bertino L, et al.Status and future of data assimilation in operational oceanography[J]. Journal of Operational Oceanography,2015, 8(Suppl.1):28-48.
[10] Metzger E J, Smedstad O M, Thoppil P, et al. Validation Test Report for the Global Ocean Prediction System V3.0-1/12° HYCOM/NCODA: Phase I[R]. NRL Memo. Report, NRL/MR/7320-08-9148, 2008.
[11] Metzger E J, Smedstad O M, Thoppil P, et al. Validation Test Report for the Global Ocean Forecast System V3.0-1/12o HYCOM/NCODA: Phase II[R]. NRL Memo. Report, NRL/MR/7320-10-9236, 2010.
[12] Metzger E J, Smedstad O M, Thoppil P G, et al.US navy operational global ocean and Arctic ice prediction systems[J]. Oceanography, 2014, 27(3):32-43.
[13] Zhu Yaping, Cheng Zhoujie, He Xiyu.Overview of US naval operational ocean forecasting system[J]. Marine Forecasts, 2015, 32(5): 98-105.
[朱亚平, 程周杰,何锡玉. 美国海军海洋业务预报纵览[J]. 海洋预报,2015, 32(5):98-105.]
[14] Divakaran P, Brassington G B, Ryan A G, et al.GODAE OceanView inter-comparison for the Australian region[J]. Journal of Operational Oceanography, 2015, 8(Suppl.1): s112-s126.
[15] Mehra A, Rivin I.A real time ocean forecast system for the north Atlantic Ocean[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2010, 21(1):211-228.
[16] Cummings J A.Operational multivariate ocean data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613):3 583-3 604.
[17] Cummings J A, Smedstad O M.Variational data assimilation for the global ocean[M]∥Park S K, Xu L,eds.Data Assimilation for Atmospheric, Oceanic & Hydrologic Applications (Vol. II) . Berlin Heidelberg:Springer,2013:303-343.
[18] Tranchant B, Testut C E, Ferry N, et al.SAM2: The second generation of Mercator assimilation system[C]∥Proceeding of the 4th international Conference on EUROGOOS. Brest, 2005:650-655.
[19] Brasseur P, Bahurel P, Bertino L, et al.Data assimilation in operational ocean forecasting systems: The MERCATOR and MERSEA developments[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613):3 561-3 582.
[20] Tranchant B, Testut C E, Bourdallé-Badie R, et al.The global 1/12°Mercator Ocean forecasting system:Scientific design and first results[R]∥GODAE Final Symposium 2008. Nice,France:GODAE Prject office,2008.
[21] Ferry N, Parent L, Garric G, et al. Mercator Global Eddy Permitting Ocean Reanalysis GLORYS1V1: Description and Results[R]. Mercator Ocean Quarterly Newsletter #36,2010.
[22] Parent L, Ferry N, Barnier B, et al.GLOBAL Eddy-Permitting Ocean Reanalyses and Simulations of the Period 1992 to Present[R]. Technical Report, Mercator Ocean, 2013.
[23] Lellouche J M,Le Galloudec O, Drévillon M, et al.Evaluation of global monitoring and forecasting systems at Mercator Océan[J].Ocean Science, 2013, 9(1):57-81.
[24] Lellouche J M, Legalloudec O, Bourdallé-Badie R, et al.The Global Mercator Ocean Analysis and Forecasting High Resolution System and Its Main Future Updates[R].Vienna, Austria: European Geosciences Union General Assembly,2015.
[25] Dombrowsky E, Bertino L, Brassington G B, et al.GODAE systems in operations[J]. Oceanography, 2009, 22(3):80-95.
[26] Bell M J, Forbes R M, Hines A.Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting[J]. Journal of Marine Systems, 2000, 25(1):1-22.
[27] Blockley E W, Martin M J, McLaren A J, et al. Recent development of the Met Office operational ocean forecasting system: An overview and assessment of the new Global FOAM forecasts[J]. Geoscientific Model Development, 2014, 7(6):2 613-2 638.
[28] Mogensen K S, Balmaseda M A, Weaver A, et al.A variational data assimilation system for the NEMO ocean model[J].ECMWF Newsletter,2009,20:17-22.
[29] Mogensen K S, Balmaseda M A, Weaver A.The NEMOVAR Ocean Data Assimilation System as Implemented in the ECMWF Ocean Analysis for System 4[Z].ECMWF Technical Memorandum,2012.
[30] Martin M J, Hines A, Bell M J.Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact[J]. Quarterly Journal of the Royal Meteorological Society,2007,133(625):59-89.
[31] Waters J, Lea D J, Martin M J, et al.Describing the Development of the New Foam-nemovar System in the Global 1/4 Degree Configuration[R]. Technical Report 578, Met Office, 2013.
[32] Waters J, Lea D J, Martin M J, et al.Implementing a variational data assimilation system in an operational 1/4 degree global ocean model[J].Quarterly Journal of the Royal Meteorological Society, 2014, 141(687):333-334
[33] Blockley E W, Coauthors. Recent development of the Met Office operational ocean forecasting system: An overview and assessment of the new Global FOAM forecasts[J].Geoscientific Model Development, 2013, 6(7):6 219-6 278.
[34] Brassington G B, Pugh T, Spillman C, et al.BLUElink> development of operational oceanography and servicing in Australia[J].Journal of Research and Practice in Information Technology, 2007, 39(2):151-164.
[35] Oke P R, Brassington G B, Griffin D A, et al.The Bluelink Ocean Data Assimilation System (BODAS)[J]. Ocean Modelling, 2008, 21(1):46-70.
[36] Oke P R, Griffin D A, Schiller A, et al.Evaluation of a near-global eddy-resolving ocean model[J].Geoscientific Model Development,2013, 6(3):591-615.
[37] Usui N, Ishizaki S, Fujii Y, et al.Meteorological research institute Multivariate Ocean Variational Estimation (MOVE) system: Some early results[J].Advances in Space Research, 2006, 37(4):806-822.
[38] Toyoda T, Fujii Y, Yasuda T, et al.Improved analysis of seasonal-interannual fields using a global ocean data assimilation system[J].Theoretical and Applied Mechanics Japan, 2013, 61:31-48,doi:10.11345/inctam.61.31.
[39] Toyoda T, Fujii Y, Yasuda T, et al.Data assimilation of sea ice concentration into a global ocean-sea ice model with corrections for atmospheric forcing and ocean temperature fields[J].Journal of Oceanography, 2016, 72(2):235-262.
[40] Dupont F, Chittibabu P, Fortin V, et al.Assessment of a NEMO-based hydrodynamic modelling system for the Great Lakes[J].Water Quality Research Journal of Canada, 2012, 47(3/4):198-214.
[41] Dupont F, Higginson S, Bourdallé-Badie R, et al.A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans[J]. Geoscientific Model Development, 2015, 8(5):1 577-1 594.
[42] Francis P A, Vinayachandran P N, Shenoi S S C. The Indian ocean forecast system[J]. Current Science, 2013, 104(10):1 354-1 368.
[43] Lima J A M, Martins R P, Tanajura C A S, et al. Design and implementation of the Oceanographic Modeling and Observation Network (REMO) for operational oceanography and ocean forecasting[J].Revista Brasileira de Geofisica, 2013, 31(2):209-228.
[44] Clemente A S T, Alex N S, Davi M, et al. The REMO ocean data assimilation system into HYCOM (RODAS_H):General description and preliminary results[J].Atmospheric and Oceanic Science Letters,2014, 7(5):464-470.
[45] Wang H.Recent progress in operational oceanography in the National Marine Environment Forecasting Centre of China[R]∥ 3rd Meeting of the GODAE OceanView Science Team.Paris, France,2011.
[46] Wan L, Zhu J, Bertino L, et al.Initial ensemble generation and validation for ocean data assimilation using HYCOM in the Pacific[J].Ocean Dynamics, 2008, 58(2):81-99.
[47] Wan L, Zhu J, Wang H, et al.A “Dressed” ensemble Kalman filter using the hybrid coordinate ocean model in the Pacific[J]. Advances in Atmospheric Sciences, 2009, 26(5):1 042-1 052.
[48] Wan L, Bertino L, Zhu J.Assimilating altimetry data into a HYCOM model of the Pacific:Ensemble optimal interpolation versus Ensemble Kalman Filter[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(4):753-765.
[49] Zhang R H, Endoh M.A free surface general circulation model for the tropical Pacific Ocean[J]. Journal of Geophysical Research, 1992, 97(C7):11 237-11 255.
[50] Li Hong, Xu Jianping.Development of data assimilation and its application in ocean science[J].Marine Science Bulletin, 2011, 30(4):463-472.
[李宏,许建平. 数据同化技术的发展及其在海洋科学中的应用[J]. 海洋通报, 2011,30(4):463-472.]
[51] Wang Yi, Yu Zhouwen.Validation of impact of assimilation of altimeter satellite significant wave height on wave forecast in the northwest Pacific[J].Acta Oceanologica Sinica,2009, 31(6):1-6.
[王毅, 宇宙文. 卫星高度计波高数据同化对西北太平洋海浪数值预报的影响评估[J]. 海洋学报, 2009, 31(6):1-6.]
[52] Wang Hui, Liu Guimei, Sun Song, et al.A three-dimensional coupled physical and biological modelstudy in the spring of 1993 in Bohai Sea of China[J].Acta Oceanologica Sinica,2007, 26(6):1-12.
[53] Liu G, Chai F.Seasonal and interannual variation of physical and biological processes during 1994-2001 in the Sea of Japan/East Sea: A three-dimensional physicalbiogeochemical modeling study[J].Journal of Marine Systems,2009, 78(2):265-277.
[54] Liu G, Chai F.Seasonal and interannual variability of primary and export production in the South China Sea: A three-dimensional physical-biogeochemical model study[J].ICES Journal of Marine Science,2009, 66(2):420-431.
[55] Chai F, Liu G M, Xue H J, et al.Seasonal and interannual variability of carbon cycle in South China Sea: A three-dimensional physical-biogeochemical modeling study[J].Journal of Oceanography, 2009, 65(5):703-720.
[56] Li Yan, Zhu Jiang, Wang Hui, et al.The assimilation technology application in the oil spill emergency forecasting system of the Bohai Sea[J]. Acta Oceanologica Sinica, 2014, 36(3):113-120.
[李燕,朱江,王辉,等.同化技术在渤海溢油应急预报系统中的应用[J]. 海洋学报, 2014, 36(3):113-120.]
[57] Wang Dongxiao, Qin Yinghao, Xiao Xianjun, et al.El Niño and El Niño Modoki variability in a new ocean reanalysis[J].Ocean Dynamics, 2012, 62(9):1 311-1 322.
[58] Wang Dongxiao, Qin Yinghao, Xiao Xianjun, et al.Preliminary results of a new global ocean reanalysis[J].Chinese Science Bulletin, 2012, 57(26):3 509-3 517.
[59] Xiao Xianjun, He Na, Zhang Zuqiang, et al.Variation assimilation using satellite data of sea surface temperature and altimeter[J].Journal of Tropical Oceanography, 2011, 30(3):1-8.
[肖贤俊, 何娜, 张祖强, 等. 卫星遥感海表温度资料和高度计资料的变分同化[J]. 热带海洋学报, 2011, 30(3):1-8. ]
[60] Qin Y H, Wan L Y, Wang H.A global ocean assimilation system for real time operational forecast[R]∥ 5th China-Italy Collaboration Workshop—Operational Oceanography and Regional Climate Change in the Adriatic and South-East China Seas. Lecce,Italy,2014.
[61] Wang H.Operational Oceanography Forecasting System in Developing Countries[R]. GODAE OceanView Symposium 2013.Washington,USA, 2013.
[62] Zhang Binjian. Chinese Global Operational Oceanography Forecasting System is Officially Issued[N]. China Ocean News, 2013-10-18.
[张斌键.全球业务化海洋学预报系统正式运行[N]. 中国海洋报, 2013-10-18.]
[63] Wang Hui, Liu Na, Pang Renbo, et al.Global ocean forecasting and scientific big data[J]. Chinese Science Bulletin, 2015, 60(5):479-484.
[王辉, 刘娜, 逄仁波, 等. 全球海洋预报与科学大数据[J]. 科学通报, 2015, 60(5):479-484.]
[64] Tonani M, Balmaseda M, Bertino L, et al.Status and future of global and regional prediction systems[J].Journal of Operational Oceanography, 2015, 8(Suppl.2):s201-s220.
[65] Kleist D T, Parrish D F, Derber J C, et al. Improving incremental balance in the GSI 3DVAR analysis system[J].Monthly Weather Review, 137(3):1 046-1 060.
[66] Kleist D T, Kleist D T, Parrish D F, et al.Implementation of a new 3DVAR analysis as part of the NCEP global data assimilation system[J].Weather Forecasting,2008,24:1 691-1 705,doi:10.1175/2008MWR2623.1.
[67] Han J, Pan H L.Revision of convection and vertical diffusion schemes in the NCEP global forecast system[J].Weather and Forecasting,2011, 26(4):520-533.
[68] Xu Peng, Liu Zhiyu, Mao Xinyan, et al.Estimation of vertical eddy viscosity and bottom drag coefficients in tidally energetic narrow bay[J].Journal of Ocean University of China, 2013,43(8):1-7.
[徐鹏,刘志宇,毛新燕,等. 强潮狭长海湾中垂直涡黏性系数与底拖曳系数的估计[J].中国海洋大学学报,2013, 43(8):1-7.]
[69] Griffies S M, Harrison M J, Pacanowskir C, et al.A technical guide to MOM4[R]∥GFDL Ocean Group Technical Report.Princeton, New Jersey:NOAA/Geophysical Fluid Dynamics Laboratory,2013.
[70] Ardhuin F, Rogers E, Babanin A V, et al.Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation[J].Journal of Physical Oceanography, 2010, 40(9):1 917-1 941.
[71] Bi Fan.On the Wave-Induced Effect to Circulation Transport and the Characteristics of Swell Propagation and Dissipation[D].Qingdao:Ocean University of China, 2013.
[毕凡. 波浪对环流输运影响和涌浪传播耗散特征研究[D].青岛:中国海洋大学, 2013.]
[72] Chen C S, Beardsley R C, Cowles G. An Unstructured Grid, Finite-Volume Coastal Ocean Model FVCOM User Manual[R].SMAST/UMASSD, 2006:6-8.
[73] Li Hong, Xu Jianping, Liu Zenghong, et al.Study on the global ocean Argo gridded dataset and its validation community in coastal waters of Yantai[J].Marine Science Bulletin,2013,32(6):108-118.
[李宏,许建平,刘增宏,等.全球海洋Argo网格资料集及其验证[J]. 海洋通报,2013,32(6):108-118.]
[74] Yang Q, Losa S N, Losch M, et al.Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter[J].Journal of Geophysical Research Oceans, 2014, 119(10):6 680-6 692.
[75] Zhao Jiechen, Yang Qinghua, Li Ming,et al.Improving Arctic sea ice concentration forecasts with a nudging data assimilation method[J].Acta Oceanologica Sinica, 2016, 38(5):70-82.
[赵杰臣,杨清华,李明,等. Nudging资料同化对北极海冰密集度预报的改进[J].海洋学报, 2016, 38(5):70-82.]
[76] Yang Qinghua, Liu Jiping, Zhang Zhanhai, et al.A preliminary study of the Arctic Sea ice numerical forecasting: Coupled sea ice-ocean modelling experiments based on MITgcm[J]. Chinese Journal of Atmospheric Sciences,2011,35(3): 473-482.
[杨清华,刘骥平,张占海, 等.北极海冰数值预报的初步研究——基于海冰—海洋耦合模式MITgcm的模拟试验[J]. 大气科学, 2011, 35(3):473-482.]
[77] Yang Q, Liu J, Leppäranta M, et al.Albedo of coastal landfast sea ice in Prydz Bay, Antarctica: Observations and parameterization[J]. Advances in Atmospheric Sciences, 2016, 33(5):535-543.
[78] Yang, Q, Liu J, Zhang Z, et al. Sensitivity of the Arctic sea ice concentration forecasts to different atmospheric forcing: A case study[J]. Acta Oceanologica Sinica, 2014, 33(12):15-23.
[79] Yang Q, Losa S N, Losch M, et al.The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction[J].Quarterly Journal of the Royal Meteorological Society,2015, 141(691):2 314-2 323.
[80] Lyu Guokun, Wang Hui, Zhu Jiang, et al.Assimilating the along-track sea level anomaly into the regional ocean modeling system using the ensemble optimal interpolation[J].Acta Oceanologica Sinica,2014, 33(7):72-82.
[81] Ji Qiyan, Zhu Xueming, Wang Hui, et al.Assimilating operational SST and sea ice analysis data into an operational circulation model for the coastal seas of China[J].Acta Oceanologica Sinica, 2015, 34(7):54-64.
[82] Ji Min,Chen Li, Jin Fengxiang, et al.Adaptive-step based marine fluid flow streamline constructing algorithm[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1 052-1 056.
[季民, 陈丽, 靳奉祥,等. 自适应步长的海洋流线构造算[J]. 武汉大学学报:信息科学版, 2014, 39(9):1 052-1 056.]
[83] Zhang Lin, Li Chunhua, Chai Xianming, et al.Analysis of oceanic and meteorological elements when R/V Xuelong trapped in the Antarctic pack ice zone in early January 2014[J].Chinese Journal of Polar Research,2014, 26(4):487-495.
[张林, 李春花, 柴先明, 等. 2014年年初雪龙船在南极被海冰围困期间海洋气象环境分析[J]. 极地研究, 2014, 26(4):487-495.]
[84] Lu Qi. The Role of Chinese Global Operational Oceanography Forecasting System in the Search for MH370[N]. China Science Daily, 2014-03-24.
[陆琦. 全球海洋数值预报助力失联客机搜寻[N]. 中国科学报, 2014-03-24.]
[85] Wu Mengmeng,Wan Liying,Liu Kewei, et al.Comparative study on the operational numerical prediction results from WRF and MM5 in the Indian Ocean[J]. Marine Forecasts, 2014, 31(3):66-71.
[吴萌萌,万莉颖,刘克威,等. WRF与MM5在印度洋海域业务化预报结果的对比分析[J]. 海洋预报, 2014, 31(3):66-71.]
[86] Wang H, Wang Z Y, Zhu X M, et al.Numerical study and prediction of nuclear contaminant transport from Fukushima Daiichi nuclear power plant in the North Pacific Ocean[J]. Chinese Science Bulletin, 2012, 57(26):3 518-3 524.
[87] Fang Changfang, Zhang Xiang, Yin Jianping.Development status and trends of ocean forecasting system in the 21st Century[J].Marine Forecasts,2013, 30(4):93-100.
[方长芳,张翔,尹建平. 21世纪初海洋预报系统发展现状和趋势[J]. 海洋预报, 2013, 30(4):93-100.]
[88] Hurlburt H E, Chassignet E P, Cummings J A, et al.Eddy-resolving global ocean prediction[M]∥Hecht M, Hasumi H,eds. “Ocean Modeling in An Eddying Regime”. Geophysical Monograph 177. Washington:American Geophysical Union,2008.
[89] Cummings J A.Operational multivariate ocean data assimilation[J].Quarterly Journal of the Royal Meteorological Society,2005, 131(613):3 583-3 604.
[90] Ren Shihe, Wang Hui, Liu Na.Review of ocean front in Chinese marginal seas and frontal forecasting[J].Advances in Earth Science, 2015,30(5):552-563.
[任诗鹤,王辉,刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展,2015,30(5):552-563.]
[91] Xiong Chunhui, Zhang Lifeng, Guan Jiping, et al.Development and application of ensemble-variational data assimilation methods[J].Advances in Earth Science, 2013, 28(6):648-656.
[熊春晖, 张立凤, 关吉平, 等. 集合—变分数据同化方法的发展与应用[J].地球科学进展, 2013, 28(6):648-656.]
[92] Wang Lei, Wang Zhanggui, Ling Tiejun, et al.Review of vertical mixing parameterization in ocean climate modeling[J].Marine Forecasts, 2014, 31(5):93-104.
[汪雷, 王彰贵, 凌铁军, 等. 海洋模式中垂直混合参数化方案介绍[J]. 海洋预报, 2014, 31(5):93-104.]
[93] Griffies S M, Böning C, Bryan F O, et al.Developments in ocean climate modelling[J]. Ocean Modelling, 2000, 2(3):123-192.
[94] Griffies S M, Böning C, Bryan F O, et al.Problems and prospects in large-scale ocean circulation models[C]∥Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (Vol. 2). Venice, Italy, 2010.
[95] Zhang Zhiyuan, Song Shunqiang, Liu Li, et al.Numerical simulation and verification of the wave-circulation coupled model[J]. Ocean Technology,2011,30(4):87-92.
[张志远, 宋顺强, 刘利, 等. 浪流耦合模式数值模拟及检验分析[J]. 海洋技术, 2011, 30(4):87-92.]
[1] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[2] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[3] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[4] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[5] 刘增宏, 吴晓芬, 许建平, 李宏, 卢少磊, 孙朝辉, 曹敏杰. 中国Argo海洋观测十五年[J]. 地球科学进展, 2016, 31(5): 445-460.
[6] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[7] 白晓平,李红,方栋,胡非,FrancescaCostabile,王芬娟. 资料同化在空气质量预报中的应用[J]. 地球科学进展, 2007, 22(1): 66-73.
阅读次数
全文


摘要