地球科学进展 ›› 2014, Vol. 29 ›› Issue (8): 974 -984. doi: 10.11867/j.issn.1001-8166.2014.08.0974

上一篇    

紫金山金铜矿黄铁矿化学成分标型特征及其意义
张文媛 1( ), 王翠芝 1, *( ), 魏晓灿 2, 范明森 1, 陈丽华 1   
  1. 1 福州大学紫金矿业学院, 福建福州 350108
    2 紫金矿业集团股份有限公司, 福建上杭 364200
  • 收稿日期:2014-04-29 修回日期:2014-07-21 出版日期:2014-09-16
  • 通讯作者: 王翠芝 E-mail:wenyuanzhang66@163.com;wcuizhi@163.com
  • 基金资助:
    国家自然科学基金项目“紫金山铜金矿硫酸盐对成矿的指示作用”(编号:41072067)资助

The Implications and Typomorphic Characteristics of Pyrite Chemical Composition in Zijinshan GoldCopper Deposit

Wenyuan Zhang 1( ), Cuizhi Wang 1( ), Xiaocan Wei 2, Mingsen Fan 1, Lihua Chen 1   

  1. (1 Zijinmining college of Fuzhou university, Fuzhou 350108, China
    2 Zijin Mining grop company limited, Shanghang 364200, China)
  • Received:2014-04-29 Revised:2014-07-21 Online:2014-09-16 Published:2014-09-17

紫金山金铜矿属典型的高硫化型浅成低温热液矿床。黄铁矿的电子探针(EPMA)测试和S同位素分析显示, 该区黄铁矿总体表现为亏Fe富S型, S/Fe原子比从浅部到深部呈现升高的趋势, 表明深部成矿是高氧—高硫化环境;黄铁矿的Ni-Co图解、As-Co-Ni三角相图解及w(Se), w(S)/w(Se)标型特征显示, 其是与火山作用有关的热液成因;该区黄铁矿是原生金的主要载金矿物, Au是以纳米级自然金(Au0)的形式存在的;黄铁矿的w(Cu+Pb+Zn)从浅部到深部呈逐渐增加的趋势;黄铁矿微量元素的lga-lgb成正相关关系;黄铁矿的微量元素综合比值Φ从浅部到深部呈逐渐降低的趋势;黄铁矿的S同位素结果表明, 其δ34S值介于-3.0‰~3.5‰之间, 极差为6.50‰, 平均值为-0.18‰, S主要来源于深部岩浆。根据其化学成分标型特征, 总结该矿床的产出环境、热液及成矿物质来源等成因信息, 并对高硫化型浅成低温热液矿床中黄铁矿的化学成分标型提供一定的研究基础。

:Zijinshan Gold-copper deposit is attributed to the typical high- sulphidation epithermal deposit. Byingthe electron microprobe (EPMA) test and sulfur isotope analysis of pyrite shows that the generally pyrite is sulfur-rich and iron- deficiency type in this area. From shallow to deep, the S / Fe atomic ratio showing increasing trend. It indicated that a metallogenic environment of highly acidic with high oxygen and sulfur fugacity. The Ni-Codiagrams, As-Co-Ni ternary phase diagrams and standard type features of w(Se) and w(S)/ w(Se) indicated that the pyrite is hydrothermal related to volcanism. Pyrite of this area is the contained gold mineral, the occurrence of gold in pyrite exist in nanoscale particle form. w(Cu + Pb + Zn) of pyrite Tend to gradually increased from shallow to deep. The trace elements lga-lgb of pyrite was positive correlation. The comprehensive trace element ratios Ф of pyrite was gradually decreased from shallow to deep. The sulfur isotope analysis results of pyrite showed that the {Invalid MML} value from -3.0‰ to 3.5‰, with amean of 6.50‰ and average of -0.18‰, which are similar to the magmatic sulfur. According to the typomorphic characteristics of the chemical composition, summarizing the environment of the deposit, the causes information, such as the hydrothermal, the mineral sources and so on .It also provides certain research bases to study the typomorphic characteristic of pyrite composition in the high sulphidation type epithermal gold-copper deposit.

中图分类号: 

图1 紫金山金铜矿床3线铜矿体地质剖面图(据福建紫金矿业股份有限公司, 2008修改) 1-中细粒花岗岩;2-石英(斑)岩;3-蚀变分带界限;4-金矿体;5-铜矿体;6-矿带划分界限
Fig 1. Copper ore body section of 3 rd line in Zijinshan gold-copper deposit (according to the Zijin mining group Co., LTD., 2008) 1-middle fine granite;2-quartz porphyry;3-Boundary line of alteration belt;4-gold body;5-copper body;6-Boundary line of mineralization belt
表1 样品采样位置及岩性
Table1 Sample location and lithology
图2 紫金山金铜矿黄铁矿的矿相学特征 (a)浸染状构造与脉状构造;(b)团块状构造;(c)碎裂构造;(d)脉状构造;(e)半自形-自形晶粒状结构;(f)脉状分布的黄铁矿;(g)他形-半自形晶粒状结构;(h)碎裂结构;(i)铜蓝沿黄铁矿碎裂充填;(j)环带结构;(k)黄铁矿沿铜硫化合物边缘分布;(l)与铜蓝共生的黄铁矿;(m)-(o)残余结构;(p)脉状黄铁矿; PyI-成矿前期黄铁矿;PyII-成矿期黄铁矿;PyIII-成矿后期黄铁矿;Alu-明矾石;Dig-蓝辉铜矿;Cov-铜蓝;En-硫砷铜矿;Bn-斑铜矿;Ccp-黄铜矿
Fig 2. Fig 2 The ore microscopy characteristics ofpyrites in Zijinshan gold-copper deposit (a) disseminated and vein structure; (b) agglomerate structure; (c) fragmentation structure; (d) vein structure; (e) hypidiomorphic-automorphic granular texture; (f) vein distribution pyrite; (g) allotriomorphic-hypidiomorphic granular texture; (h) fragmentation texture; (i) covellite filling the fissure of pyrite; (j) zoning texture; (k) pyrite distributed in the edge of the copper-sulfur compounds; (l) pytite symbiosis with covellite; (m) - (o) residual texture ; (p)vein distribution pyrite; PyI-pyrite formed before the Ore-forming; PyII-pyrite formed the Ore-forming; PyIII-pyrite formed after the Ore-forming; Alu-Alunite; Dig-Digenite; Cov-Covellite; En-Enargite; Bn-Bornite; Ccp-Chalcopyrite
表2 黄铁矿的电子探针(EPMA)点分析结果表(w B/%)
Table 2 EPMA spots analytical results of pyrites(w B/%)
样品号 n(m) Se Co Ni As Au Ag Fe S Cu Pb Zn Sn Sb W Mo Total
688-6 1(2) 0.000 0.059 0.054 0.011 0.017 0.014 45.168 52.768 1.292 0.000 0.000 0.000 0.000 0.009 0.000 99.357
2(5) 0.006 0.084 0.000 0.008 0.020 0.003 45.415 52.842 0.029 0.002 0.009 0.000 0.000 0.029 0.000 98.445
3(5) 0.011 0.054 0.006 0.005 0.011 0.008 45.437 53.311 0.011 0.000 0.008 0.000 0.022 0.019 0.000 98.903
4(6) 0.012 0.058 0.032 0.001 0.005 0.007 45.377 53.332 0.097 0.000 0.009 0.000 0.003 0.008 0.000 98.940
712-10 1(4) 0.028 0.060 0.001 0.005 0.015 0.003 45.531 53.492 0.007 0.016 0.004 0.000 0.003 0.029 0.000 99.193
续表2(continue to table2)
样品号 n(m) Se Co Ni As Au Ag Fe S Cu Pb Zn Sn Sb W Mo Total
712-10 2(5) 0.008 0.051 0.002 0.000 0.017 0.002 45.229 53.387 0.053 0.000 0.001 0.000 0.000 0.010 0.000 98.761
3(5) 0.012 0.061 0.001 0.007 0.019 0.005 45.400 53.614 0.019 0.000 0.000 0.000 0.004 0.010 0.000 99.152
4(3) 0.002 0.049 0.003 0.002 0.011 0.001 45.354 53.580 0.014 0.011 0.005 0.000 0.011 0.023 0.000 99.064
5(4) 0.014 0.059 0.005 0.002 0.005 0.008 45.275 53.385 0.032 0.000 0.017 0.000 0.017 0.010 0.000 98.828
6(3) 0.011 0.062 0.000 0.001 0.013 0.003 45.366 53.459 0.017 0.001 0.003 0.000 0.007 0.053 0.000 98.997
7(3) 0.005 0.083 0.001 0.000 0.018 0.000 45.446 53.452 0.048 0.000 0.011 0.000 0.007 0.017 0.000 99.088
8(4) 0.000 0.076 0.001 0.003 0.022 0.001 45.339 53.449 0.012 0.000 0.008 0.000 0.000 0.006 0.000 98.917
724-12 1(4) 0.015 0.063 0.004 0.004 0.007 0.000 46.365 52.955 0.019 0.000 0.006 0.000 0.001 0.020 0.000 99.456
2(5) 0.003 0.073 0.002 0.007 0.004 0.001 46.561 53.022 0.032 0.001 0.001 0.000 0.013 0.013 0.000 99.734
3(6) 0.004 0.051 0.006 0.001 0.006 0.009 46.218 52.914 0.003 0.000 0.012 0.000 0.009 0.010 0.000 99.243
4(6) 0.009 0.060 0.002 0.002 0.012 0.007 46.166 53.132 0.022 0.000 0.010 0.000 0.005 0.009 0.000 99.435
5(5) 0.013 0.068 0.004 0.012 0.021 0.005 45.712 52.772 0.019 0.001 0.001 0.000 0.018 0.023 0.000 98.668
DZK301-8 1(5) 0.004 0.056 0.005 0.010 0.006 0.003 45.778 53.935 0.018 0.008 0.016 0.000 0.008 0.007 0.000 99.854
2(5) 0.004 0.066 0.006 0.003 0.008 0.003 45.556 54.076 0.023 0.000 0.006 0.000 0.004 0.011 0.000 99.765
3(4) 0.004 0.061 0.004 0.000 0.011 0.006 45.767 53.706 0.009 0.000 0.007 0.000 0.002 0.012 0.000 99.588
4(4) 0.006 0.055 0.007 0.008 0.011 0.008 45.365 53.571 0.008 0.017 0.007 0.000 0.009 0.011 0.000 99.081
XI-3 1(6)
2(7)
3(2)
4(3)
0.020
0.015
0.007
0.002
0.050
0.082
0.041
0.046
0.011
0.001
0.000
0.000
0.009
0.004
0.000
0.000
0.008
0.014
0.002
0.014
0.003
0.005
0.000
0.007
45.326
44.538
44.773
44.502
53.217
52.951
52.909
53.284
0.245
1.148
0.805
1.042
0.001
0.007
0.000
0.000
0.004
0.011
0.000
0.004
0.000
0.000
0.000
0.000
0.006
0.019
0.000
0.005
0.000
0.007
0.000
0.016
0.000
0.000
0.000
0.000
98.899
98.803
98.534
98.922
XI-4 1(3) 0.002 0.069 0.000 0.000 0.006 0.003 45.078 54.227 0.727 0.002 0.010 0.006 0.000 0.001 0.000 100.131
2(7) 0.000 0.054 0.002 0.005 0.004 0.004 44.842 54.112 0.847 0.000 0.000 0.004 0.000 0.001 0.000 99.874
3(4) 0.008 0.069 0.000 0.002 0.027 0.001 44.677 54.212 0.859 0.000 0.000 0.014 0.000 0.018 0.000 99.885
4(5) 0.008 0.057 0.001 0.011 0.014 0.004 44.786 54.295 0.941 0.000 0.013 0.027 0.000 0.007 0.000 100.165
续表2(continue to table2)
样品号 n(m) Se Co Ni As Au Ag Fe S Cu Pb Zn Sn Sb W Mo Total
XI-4 5(6) 0.002 0.042 0.000 0.006 0.007 0.000 44.950 54.281 0.953 0.000 0.006 0.003 0.000 0.016 0.000 100.264
6(8) 0.004 0.061 0.012 0.006 0.010 0.004 44.742 54.298 1.194 0.002 0.007 0.005 0.000 0.004 0.000 100.347
ZK314-3 1(8) 0.010 0.058 0.002 0.002 0.012 0.001 45.342 53.841 0.292 0.001 0.004 0.009 0.000 0.004 0.000 99.579
2(12) 0.006 0.060 0.001 0.005 0.008 0.008 45.112 53.809 0.589 0.000 0.008 0.018 0.000 0.003 0.000 99.625
3(15) 0.008 0.056 0.002 0.003 0.021 0.004 44.930 54.114 0.811 0.000 0.007 0.015 0.000 0.009 0.000 99.980
4(4) 0.000 0.059 0.000 0.000 0.006 0.011 44.838 54.107 1.150 0.000 0.004 0.006 0.000 0.003 0.000 100.182
5(5) 0.004 0.058 0.001 0.002 0.007 0.012 45.364 53.725 0.421 0.000 0.023 0.021 0.000 0.007 0.000 99.645
6(9) 0.006 0.051 0.002 0.003 0.010 0.006 45.025 53.579 0.697 0.000 0.006 0.015 0.000 0.006 0.000 99.406
ZK007-08 1(3) 0.022 0.043 0.008 0.000 0.009 0.004 46.099 53.838 0.324 0.000 0.015 0.001 0.007 0.014 0.000 100.384
2(3) 0.011 0.056 0.002 0.004 0.012 0.005 46.101 53.928 0.019 0.001 0.001 0.000 0.017 0.000 0.000 100.157
3(3) 0.004 0.066 0.001 0.003 0.014 0.005 45.441 53.793 0.419 0.000 0.011 0.000 0.000 0.009 0.000 99.766
4(4) 0.029 0.057 0.001 0.002 0.005 0.001 45.853 53.943 0.036 0.008 0.000 0.002 0.015 0.006 0.000 99.957
5(3) 0.033 0.055 0.000 0.000 0.008 0.000 45.670 53.481 0.114 0.005 0.013 0.000 0.009 0.013 0.000 99.401
ZK304-30 1(3) 0.007 0.051 0.003 0.007 0.016 0.009 44.946 53.606 0.527 0.018 0.004 0.011 0.005 0.000 0.000 99.209
2(15) 0.010 0.059 0.004 0.002 0.011 0.007 45.133 53.910 0.368 0.004 0.005 0.015 0.007 0.010 0.000 99.543
3(6) 0.006 0.060 0.011 0.006 0.010 0.004 44.974 53.771 0.698 0.006 0.011 0.015 0.005 0.005 0.000 99.582
4(2) 0.002 0.058 0.006 0.013 0.020 0.008 45.238 53.930 0.182 0.000 0.006 0.013 0.004 0.018 0.000 99.496
5(2)
6(2)
0.000
0.000
0.063
0.062
0.000
0.002
0.000
0.004
0.020
0.009
0.003
0.010
45.330
45.141
53.827
53.877
0.167
0.512
0.000
0.011
0.009
0.024
0.000
0.000
0.000
0.000
0.003
0.004
0.000
0.000
99.420
99.654
688-2 1(5) 0.007 0.047 0.002 0.002 0.016 0.009 45.443 54.201 0.035 0.000 0.004 0.020 0.000 0.004 0.000 99.791
2(4) 0.002 0.056 0.004 0.004 0.013 0.017 45.162 53.992 0.630 0.000 0.000 0.001 0.000 0.007 0.000 99.886
3(4) 0.005 0.057 0.001 0.007 0.004 0.002 45.682 54.208 0.076 0.010 0.002 0.009 0.000 0.003 0.000 100.063
4(7) 0.010 0.064 0.000 0.003 0.011 0.008 45.609 54.039 0.063 0.005 0.009 0.005 0.000 0.000 0.000 99.817
5(6) 0.007 0.058 0.001 0.005 0.010 0.012 45.732 54.304 0.164 0.004 0.013 0.020 0.000 0.014 0.000 100.342
续表2(continue to table2)
样品号 n(m) Se Co Ni As Au Ag Fe S Cu Pb Zn Sn Sb W Mo Total
724-6 1(5) 0.015 0.054 0.001 0.009 0.020 0.000 45.797 53.708 0.022 0.000 0.006 0.000 0.016 0.007 0.000 99.655
2(5) 0.003 0.059 0.006 0.005 0.028 0.002 45.904 53.690 0.022 0.003 0.004 0.000 0.006 0.007 0.000 99.739
3(5) 0.003 0.052 0.004 0.002 0.000 0.011 45.821 53.693 0.029 0.000 0.013 0.000 0.012 0.011 0.000 99.652
4(4) 0.012 0.067 0.004 0.000 0.029 0.009 45.707 53.745 0.023 0.000 0.000 0.000 0.016 0.017 0.000 99.627
ZK12-13-6 1(5) 0.000 0.049 0.001 0.003 0.022 0.001 46.452 53.157 0.033 0.000 0.005 0.000 0.001 0.004 0.000 99.729
2(5) 0.009 0.054 0.000 0.008 0.014 0.002 46.507 53.538 0.033 0.000 0.007 0.000 0.003 0.009 0.000 100.184
3(4) 0.014 0.063 0.002 0.011 0.003 0.004 46.199 52.905 0.028 0.000 0.018 0.000 0.007 0.019 0.000 99.273
4(5) 0.010 0.064 0.000 0.003 0.007 0.005 46.166 53.222 0.024 0.000 0.014 0.000 0.004 0.005 0.000 99.524
5(5) 0.009 0.062 0.000 0.000 0.017 0.005 46.037 53.259 0.026 0.000 0.015 0.000 0.018 0.015 0.000 99.463
ZK411-6 1(5) 0.018 0.088 0.004 0.000 0.012 0.000 45.854 54.614 0.018 0.000 0.001 0.008 0.000 0.006 0.000 100.625
2(6) 0.009 0.097 0.001 0.003 0.013 0.005 45.907 54.617 0.042 0.001 0.008 0.015 0.000 0.000 0.000 100.716
3(4) 0.010 0.054 0.007 0.005 0.012 0.002 45.702 54.288 0.032 0.000 0.011 0.009 0.000 0.001 0.000 100.132
4(6) 0.002 0.183 0.002 0.001 0.002 0.002 45.611 54.511 0.025 0.000 0.008 0.022 0.000 0.008 0.000 100.374
表3 紫金山金铜矿黄铁矿硫同位素组成
Table 3 Sulfur isotopic composition of pytite in Zijinshan gold-copper deposit
图3 紫金山金铜矿黄铁矿的lg a-lg b
Fig.3 Trace elements lg a-lg b diagram of pyrites in Zijinshan gold copper deposit
图4 黄铁矿微量元素综合比值 Φ空间分布规律
Fig.4 The spatial distribution of trace element integrated ratio Φ in pyrite
图5 黄铁矿S/Fe原子比空间分布规律
Fig.5 The spatial distribution of the S/Fe atomic ratio in pyrite
图6 紫金山金铜矿黄铁矿Ni-Co图解
Fig.6 The Ni-Co diagram of pyrite in Zijinshan gold-copper deposit
图7 紫金山金铜矿黄铁矿As-Co-Ni图解
Fig.7 The As-Co-Ni diagram of pyrite in Zijinshan gold-copper deposit
图8 黄铁矿Cu+Pb+Zn空间分布规律
Fig.8 The spatial distribution of Cu+Pb+Zn in pyrite
图9 紫金山金铜矿黄铁矿As-Au图解底图 [ 27 ]
Fig.9 As-Au diagram of pyrites in Zijinshan gold-copper deposit [ 27 ]
[1] Xu Shunshan, Wu Ganguo, Jiang Wan, et al. Studing on fractals of Zijinshan copper-gold deposit[J]. Geology and Prospecting, 1999, 35(5):50-52.
[许顺山, 吴淦国, 江万, 等.分形在紫金山矿床中的应用[J]. 地质与勘探, 1999, 35(5):50-52.]
[2] Zhang Dequan, Li Daxin, Feng Chengyou, et al. The temporal and spatial framework of the Mesozoic Magmatic System in Zijinshan area and its geological significance[J]. Acta Geoscientia Sinica, 2001, 22(5): 403-408.
[张德全, 李大新, 丰成友, 等.紫金山地区中生代岩浆系统的时空结构及其地质意义[J]. 地球学报, 2001, 22(5):403-408.]
[3] Zhang Dequan, She Hongquan, Li Daxin, et al. The porphyry-epithermal metallogenic system in the Zijinshan region, Fujian Province[J]. Acta Geologica Sinica, 2003, 77(2): 253-261.
[张德全, 佘宏全, 李大新, 等.紫金山地区的斑岩—浅成热液成矿系统[J]. 地质学报, 2003, 77(2):253-261.]
[4] Zhang Dequan, Feng Chengyou, Li Daxin, et al. The evolution of ore-forming fluids in the porphyry-epithermal metallogenic system of Zijinshan area[J]. Acta Geoscientica Sinica, 2005, 26(2): 127-136.
[张德全, 丰成友, 李大新, 等.紫金山地区斑岩—浅成热液成矿系统的成矿流体演化[J]. 地球学报, 2005, 26(2):127-136.]
[5] Chen Jing, Chen Yanjing, Zhong Jun, et al. Fluid inclusion study of the Wuziqilong Cu deposit in the Zijinshan ore field, Fujian Province[J]. Acta Petrologica Sinica, 2011, 27(5): 1 425-1 438.
[陈静, 陈衍景, 钟军, 等.福建省紫金山矿田五子骑龙铜矿床流体包裹体研究[J]. 岩石学报, 2011, 27(5):1 425-1 438.]
[6] Qiu Xiaoping, Lan Yuezhang, Liu Yu. The key to the study of deep mineralization and the evalution of ore-prospecting potential in the Zijinshan gold and copper deposit[J]. Acta Geoscientica Sinica, 2010, 31(2):209-215.
[邱小平, 蓝岳彰, 刘羽.紫金山金铜矿床深部成矿作用研究和找矿前景评价的关键[J]. 地球学报, 2010, 31(2):209-215.]
[7] Liu Yu, Liu Wenyuan, Wang Shaohuai. Preliminary compositional investigation of binary Cu sulfides from Zijinshan Au-Cu deposit[J]. Mineral Deposits, 2011, 30(4): 735-741.
[刘羽, 刘文元, 王少怀.紫金山金铜矿二元铜硫化物成分特点的初步研究[J]. 矿床地质, 2011, 30(4):735-741.]
[8] Liu Wenyuan, Liu Yu, Qiu Xiaoping. The first discovery of Hemusite in China and its mineralogical features[J]. Acta Mieralogica Sinica, 2012, 32(4):493-497.
[刘文元, 刘羽, 邱小平.硫钼锡铜矿在中国的首次发现及矿物学特征[J]. 矿物学报, 2012, 32(4):493-497.]
[9] Wang Cuizhi, Qi Jinping, Lan Ronggui. The study of chemical copposition characteristics of alunite in the Zijinshan Cu-Au deposit[J]. China Mining Magazing, 2013, 22(3):76-79.
[王翠芝, 祁进平, 兰荣贵.紫金山金铜矿明矾石的化学成分特征及其综合开发利用[J]. 中国矿业, 2013, 22(3):76-79.]
[10] Wang Cuizhi. Lithogeochemical characteristics of the alunite metasomatic alterated rock of the Zijingshan gold-copper deposit[J]. Advances in Earth Science, 2013, 28(8):897-912.
[王翠芝.紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征[J]. 地球科学进展, 2013, 28(8):897-912.]
[11] Li Shengrong, Chen Guangyuan, Shao Wei, et al. Thermoelectricity of pyrite from the Jinqingding gold deposit in the Jiaodong region[J]. Geological Exploration for Non-Ferrous Metals, 1994, 3(5): 302-307.
[李胜荣, 陈光远, 邵伟, 等.胶东乳山金矿金青顶矿区黄铁矿热电性研究[J]. 有色金属矿产与勘查, 1994, 3(5):302-307.]
[12] Li Shengrong. On the dissemination and development of genetic mineralogy in China[J]. Earth Science Frontiers, 2013, 20(3):46-54.
[李胜荣.成因矿物学在中国的传播与发展[J]. 地学前缘, 2013, 20(3):46-54.]
[13] Zhang Dequan, Li Daxin, Zhao Yiming, et al. Alteration and Mineralization Zones of the Zijinshan Copper-gold Deposit[M]. Beijing: Geological Publishing House, 1992.
[张德全, 李大新, 赵一鸣, 等.紫金山铜金矿床蚀变和矿化分带[M].北京:地质出版社, 1992.]
[14] Li Yulin. Study on mineralogicul characteristics of pyrite in copper gold mine from Zijin Mountion Shanghang County Fujian Province[J]. Fujian Geology, 2009, 28(2):107-114.
[李玉霖.福建上杭紫金山铜金矿床中黄铁矿的矿物学特征研究[J]. 福建地质, 2009, 28(2):107-114.]
[15] Yan Yutong, Li Shengrong, Jia Baojian, et al. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 2012, 19(4):214-226.
[严育通, 李胜荣, 贾宝剑, 等.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4):214-226.]
[16] Xu Guofeng, Shao Jielian. Typomorphic characteristics and significance of pyrite[J]. Geological Review, 1980, 20(6):541-546.
[徐国风, 邵洁莲.黄铁矿的标型特征及其实际意义[J]. 地质论评, 1980, 20(6):541-546.]
[17] Bajwah Z U, Seccombe P K, Offler R. Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineral Deposita, 1987, 22:292-300.
[18] Gong Li, Ma Guang. The characteristic typomorphic composition of pyrite and its indicative meaning to metal deposits[J]. Contributions to Geology and Mineral Resources Research, 2011, 26(2):162-166.
[宫丽, 马光.黄铁矿的成分标型特征及其在金属矿床中的指示意义[J]. 地质找矿论丛, 2011, 26(2):162-166.]
[19] Pei Yuhua, Yan Haiqi. Typomorphic characteristics of pyrite and it’s practical significancein the Qianhe gold deposits, Song Country, He’nan Province[J]. Geology and Prospecting, 2006, 42(3):56-60.
[裴玉华, 严海麒.河南省嵩县前河金矿床黄铁矿的标型特征及其意义[J]. 地质与勘探, 2006, 42(3):56-60.]
[20] Peng Li’na, Wei Junhao, Sun Xiaoyan, et al. Typomorphic characteristics of pyrites in thehuaixi copper-gold deposit, southeastern Zhejiang Province and its geological significance[J]. Geology and Exploration, 2009, 45(5): 577-587.
[彭丽娜, 魏俊浩, 孙晓雁, 等.浙东南怀溪铜金矿床黄铁矿标型特征及其地质意义[J]. 地质与勘探, 2009, 45(5):577-587.]
[21] Hu Chuyan. Characteristics of trace elements, thermoelectricity and crystal form of pyrite[J]. Geoscience, 2001, 15(2): 238-241.
[胡楚雁.黄铁矿的微量元素及热电性和晶体形态分析[J]. 现代地质, 2001, 15(2):238-241.]
[22] Li Hongyang, Li Yingjie, Yuan Wanming, et al. Mineral geochemistry in the Dashui Diorite-type gold deposit, Gansu Province[J]. Geology and Prospecting, 2007, 43(4):41-45.
[李红阳, 李英杰, 袁万明, 等.甘肃大水闪长岩型金矿床的矿物地球化学特征[J]. 地质与勘探, 2007, 43(4):41-45.]
[23] Sun Guosheng, Chu Fengyou, Hu Ruizhong, et al. Electron hole-core characteristics of pyrite from the main types of gold deposit in China and affecting factors[J]. Acta Geoscientica Sinica, 2004, 24(3):211-217.
[孙国胜, 初凤友, 胡瑞忠, 等.我国主要金矿类型中黄铁矿电子—空穴特征及影响因素[J]. 矿物学报, 2004, 24(3):211-217.]
[24] Shen Junfeng, Li Shengrong, Ma Guanggang, et al. Typomorphic characteristics of pyrite from the Linglong gold deposit:Its vertical variation and prospecting significance[J]. Earth Science Frontiers, 2013, 20(3):55-75.
[申俊峰, 李胜荣, 马广钢, 等.玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J]. 地学前缘, 2013, 20(3):55-75.]
[25] Zhou Xuewu, Li Shengrong, Lu Li, et al. Study of pyrite typomorphic characteristics of Wulong Quartz-Vein-Type Gold Deposit in Dandong, Liaoning Province, China[J]. Geoscience, 2005, 19(2):231-238.
[周学武, 李胜荣, 鲁力, 等.辽宁丹东五龙矿区石英脉型金矿床的黄铁矿标型特征研究[J]. 现代地质, 2005, 19(2):231-238.]
[26] Hu Qingcheng, Lü Xinbiao, Gao Qi, et al. Dissolution and migration of Au in hydrothermal ore deposit: A review[J]. Advances in Earth Science, 2012, 27(8): 847-856.
[胡庆成, 吕新彪, 高奇, 等.热液金矿金的溶解和迁移研究进展[J]. 地球科学进展, 2012, 27(8): 847-856.]
[27] Reich M, Kealer S, Utsunomiya S, et al. Solubility of gold in arsenic pyrite[J]. Geochemica et Cos-MochimicaActa, 2005, 69(11):2781-2796.
[1] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[2] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[3] 王新娥, 许东晖, 孙之夫, 孙宗峰, 罗景美. 山东黄金资源钻探井测井资料分析方法与应用[J]. 地球科学进展, 2014, 29(3): 397-403.
[4] 常华进,储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展, 2011, 26(5): 475-481.
[5] 张友联, 杜建国,崔月菊. 地核物质成分研究进展[J]. 地球科学进展, 2011, 26(4): 365-374.
[6] 杨红梅,凌文黎. Re-Os同位素组成测试方法及其应用进展[J]. 地球科学进展, 2006, 21(10): 1014-1024.
[7] 李文渊. Re-Os同位素体系及其在岩浆Cu-Ni-PGE矿床研究中的应用[J]. 地球科学进展, 1996, 11(6): 580-584.
[8] 张景廉,张平中. 黄铁矿对有机质成烃的催化作用讨论[J]. 地球科学进展, 1996, 11(3): 282-287.
阅读次数
全文


摘要