地球科学进展 ›› 2011, Vol. 26 ›› Issue (3): 325 -331. doi: 10.11867/j.issn.1001-8166.2011.03.0325

研究论文 上一篇    下一篇

石英SEM-CL微结构及其在岩石学中的应用
李艳青 1,佘振兵 1,2,马昌前 1,2   
  1. 1. 中国地质大学地球科学学院,湖北武汉430074; 2. 中国地质大学地质过程与矿产资源国家重点实验室,湖北武汉430074
  • 收稿日期:2010-07-14 修回日期:2010-10-08 出版日期:2011-03-10
  • 通讯作者: 佘振兵(1979-),男,湖北荆州人,副教授,主要从事沉积岩石学方面研究.  E-mail:zbsher@cug.edu.cn
  • 基金资助:

    国家自然科学青年基金项目“大别造山带白垩纪巨量岩浆侵位的沉积响应研究”(编号:40802018);国家地质学理科基地人才培养基金“利用扫描电镜—阴极发光成像法分析砂岩物源”(编号:J0830520);湖北省高等学校省级教学研究项目“地质学专业本科生科研能力培养机制的探索与实践”(编号:2009108)资助.

SEM-CL Analysis of Quartz and Its Application in Petrology

Li Yanqing 1, She Zhenbing 1,2, Ma Changqian 1,2   

  1. 1.Faculty of Earth Sciences,  China University of Geosciences, Wuhan430074, China;
    2.State Key Laboratory of Geological Processes and Mineral Resources,  China University of Geosciences,Wuhan430074, China
  • Received:2010-07-14 Revised:2010-10-08 Online:2011-03-10 Published:2011-03-10

综述了国外扫描电镜—阴极发光(SEM-CL)成像技术在岩石学研究中的应用实例。采用阴极发光探测器和扫描电镜结合的方法对石英等矿物进行观察,可以在高放大倍数和高分辨率下获得其他方法所无法揭示的丰富的微结构信息,如暗条痕和斑块、愈合裂纹、环带、复杂剪切纹、面状结构等,这些不同的微结构成为不同类型岩石中所特有的特征,因此,对沉积岩物源示踪具有较重要的参考价值。岩浆岩及热液石英中所显示的穿插结构、溶解结构、重结晶结构反映矿物多期生长和改造过程,指示岩石形成的物理和化学条件,为岩石成因探讨、岩浆演化以及成矿过程等方面的研究提供重要依据。同时,SEM-CL图像可以清晰地揭示沉积岩中石英胶结物的生长过程,从而为沉积岩的成岩历史提供了重要信息。

Recent applications of Scanning Electron MicroscopeCathodo Luminescene (SEM-CL) technique in petrology are summarized. Observations of quartz using CL detectors attached to SEM with high magnification and resolution have shown various microstructures, such as dark streaks, patches, healed fractures, zoning, shears, planar features, etc., which are invisible under traditional petrographic microcopes. These microstructures are diagnostic for detrital quartz of different origins. Quartz in hydrothermal and magmatic rocks reveals penetration, recrystalization and dissolution textures, indicating multi-generation growths and modifications and physicochemical conditions under which they are formed. Therefore, the new technique applies to studies of sedimentary provenance, petrogenesis, and magmatic and mineralization processes.

中图分类号: 

[1]Lai Yong. Application of cathodoluminescence to mineralization and lithogenesis study[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,1995,31(5):631-638.[赖勇. 阴极发光技术在成岩成矿作用研究中的应用[J].北京大学学报:自然科学版, 1995,31(5): 631-638.]
[2]Wang Yanqi. Application of Catholuminescence Microscopy in Research of Quartz Secondary Alteration[M].Beijing: Ocean Press,1992.[王衍琦.阴极发光显微镜在研究石英次生变化中应[M].北京: 海洋出版社,1992.]
[3]Ying Fengxiang, Wang Yanqi. Elemental composition and CL color of minerals[J].Journal of Chinese Electron Microscopy Society,1990,9(3):244.[应凤祥,王衍琦. 矿物的元素组成与阴极发光颜色[J].电子显微学报, 1990,9(3):244.]
[4]Zhang Benqi, Yu Hongzhong, Jiang Zaixing, et al. Characteristics and diagenetic environments of source rocks by cathodoluminescence[J]. Petroleum Exploration and Development,2003,30(3):118-121.[张本琪, 余宏忠, 姜在兴, 等.应用阴极发光技术研究母岩性质及成岩环境[J]. 石油勘探与开发, 2003,30(3):118-121.]
[5] Zhang Shaoping, Dun Tiejun. Application of the cathodoluminescence microscope in the mineral identification[J].Journal of Chang’an University (Earth Science Edition), 1989, 11(1): 42-51.[张绍平, 顿铁军. 阴极发光显微镜在岩矿鉴定方面的应用[J].长安大学学报:自然科学版,1989,11(1): 42-51.]
[6] Qiao Shuqing, Yang Zuosheng. Advances in study on quartz as a tracer for material source[J].Advances in Marine Science,2006,24(2):266-274.[乔淑卿, 杨作升.石英示踪物源研究进展[J]. 海洋科学进展, 2006,24(2):266-274.]
[7]Seyedolali A, Krinsley D H, Boggs S,et al. Provenance interpretation of quartz by scanning electron microscopcathodoluminescence fabric analysis[J].Geology,1997, 25(9):787-790.
[8]Bernet M, Bassett K. Procenance analysis by singlequartzgrain SEM-CL/optical microscopy[J].Journal of Sedimentary Reseach, 2005,75: 492-500.
[9]Müller A, Ren M, Behr H J,et al. Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock[J]. Mineralogy and Petrology,2003,79(3/4): 167-191. [
[10]Rusk B G, Reed M H. Scanning electron microscope cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit,Montana[J]. Geology,2002, 30(8): 727-730.
[11]Smedes H W. Regional geologic setting of the boulder batholith, Montana[J]. Economic Geology, 1973,68:907.
[12]Rusk B G, Reed M H, Dilles J H, et al. Intensity of quartz cathodoluminescence and traceelement content in quartz from the porphyry copper deposit at Butte, Montana[J]. American Mineralogist,2006,91(8/9): 1 300-1 312.
[13]Rusk B G.Cathodoluminescent Quartz Textures and Fluid Inclusions in Veins of the Porphyry Copper molybdenum Deposit in Butte, Montana: Constraints on the Physical and Chemical Evolution of the Hydrothermal System[D]. Eugene: University of Oregon,2003.
[14]Götze J, Plötze M, Habermann D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—A review[J].Mineralogy and Petrology,2001,71(3/4): 225-250.
[15]McCuaig T C, Kerrich R. P-T-t-deformationfluid Characteristics of Lode Gold Deposits[M]//Lentz D R, eds. Alteration and Alteration Processes Associated With Oreforming Systems.Waterloo: Geological Association of Canada Press,1994:339-379.
[16]Peng Huijuan, Wang Xiongwu, Tang Juxing, et al. The application of quartz cathodoluminescence in study of igneous rock[J]. Rock and Mineral Analysis,2010,29(2):153-160.[彭惠娟,汪雄武,唐菊兴,等.石英阴极发光在火成岩研究中的应用[J]. 岩矿测试, 2010,29(2):153-160.]
[17]Schieber J, Krinsley D, Tennison E. Provenance Studies of Finegrained Sediments with ScannedCathodoluminescence of Quartz: Potential Applications in Planetary Exploration[R].Houston:33rd Annunal Lunar and Planetary Science Conference, 2002.
[18]Milliken K L, Laubach S E. Brittle Deformation of Sandstone Diagenesis as Revealed by Scanning Cathodoluminescence Imaging with Application to Characterization of Fractured Reservoirs[M]∥Pagel M,Barbin V, Blanc P,et al.eds. Cathodoluminescence in Geosciences. Berlin:SpringerVerlag, 2000:225-244.
[19] Stöffler D, Langenhorst F. Shock metamorphism of quartz in nature and experiment[J]. Meteoritics, 1994,29: 155-181.
[20]Grieve R A F, Langenhorst F, Stöffler D. Shock metamorphism of quartz in nature and experiment. II. Significance in Geoscience[J].Meteoritics and Planetary Science,1996, 31:6-35.
[21]Milliken K L.Cathodoluminescent textures and the origin of quartz silt in oligocene mudrocks, south Texas[J].Journal of Sedimentary Research, 1994,64(3a):567-571.
[22]Wilkinson J J, Johnston J D. Pressure fluctuations, phase separation and gold precipitation during seismic fracture propagation[J]. Geology,1996,24(5):395-398.
[23]Ortoleva P J. Role of attachment kinetic feedback in the oscillatory zoning of crystals grown from melts[J].Earth Science Review, 1990, 29(1/4): 3-8.
[24] Ramseyer K, Baumannn J, Matter A, et al. Cathodoluminescence colors of quartz[J].Mineralogical Magazine, 1988, 52: 669-677.
[25]Ruffini R, Borghi A, Cossio R, et al. Volcanic quartz growthz zoning identified by cathodoluminescence and EPMA studies[J]. Mikrochim Acta,2002, 139:151-158.
[26]Ramseyer K, Mullis J. Factors influencing short-lived blue cathodoluminescence of α-quartz [J].American Mineral, 1990,75(7/8):791-800.
[27]Dickinson W R, Beard L S, Brakenridge G R, et al. Provenance of north America phanerozoic sandstones in relation to tectonic setting[J]. Geological Society of America Bulletin, 1983,94(2):222-235.
[28]Bernet M, Kapoutsos D, Bassett K. Diagenesis and provenance of Silurian quartz arenites in southeastern New York State[J]. Sedimentary Geology, 2007,201:43-55.
[29]Huang Sijing, Tong Hongpeng, Huang Keke,et al.Application of cathodolum inescence analyse to the recovery of feldspar content in sandstone[J].Advances in Earths Science,2008,10(23):1 013-1 019.[黄思静,佟宏鹏,黄可可,等.阴极发光分析在恢复砂岩碎屑长石含量中的应用——鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球科学进展,2008,10(23):1 013-1 019.]

[1] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[2] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[3] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[4] 张创, 罗然昊, 张恒昌, 周雪, 王成龙, 邢华, 钱成. 中等地温场、长深埋期石英砂岩类储层成岩作用与孔隙度演化模式——以鄂尔多斯盆地延安地区下石盒子组为例[J]. 地球科学进展, 2017, 32(7): 744-756.
[5] 杨宏宇, 赵晖, 王兴繁, 耿建伟. 光释光测年中石英颗粒全球标准曲线法(gSGC)与单片再生法(SAR)等效剂量(D e)的比对[J]. 地球科学进展, 2017, 32(10): 1111-1118.
[6] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[7] 刘春茹,尹功明,Rainer Grün. 石英ESR测年信号衰退特征研究进展[J]. 地球科学进展, 2013, 28(1): 24-30.
[8] 李国强,赵晖,范育新,彭海梅,陈发虎. 光释光测年中石英样品提纯方法的改进[J]. 地球科学进展, 2008, 23(3): 284-289.
[9] 方欣华. 海洋小尺度过程[J]. 地球科学进展, 1993, 8(5): 99-100.
阅读次数
全文


摘要