地球科学进展 ›› 2010, Vol. 25 ›› Issue (2): 154 -162. doi: 10.11867/j.issn.1001-8166.2010.02.0154

研究论文 上一篇    下一篇

楚科奇海融冰过程中的海水结构研究
赵进平 1;史久新 1;金明明 2;李超伦3;矫玉田 1;卢勇 2   
  1. 1.中国海洋大学,物理海洋学重点实验室,山东  青岛  266061; 2.国家海洋局海洋生态系统和生物地球化学实验室,浙江  杭州  310012; 3.中国科学院海洋研究所,山东  青岛  266071
  • 收稿日期:2009-07-06 修回日期:2009-08-26 出版日期:2010-02-10
  • 通讯作者: 赵进平 E-mail:jpzhao@ouc.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“北极环极边界流的结构及其对气候变化贡献的研究”(编号:40631006)资助.

Water Mass Structure of the Chukchi Sea during Ice Melting Period in the Summer of 1999

Zhao Jinping 1,Shi Jiuxin 1, [Jin Mingming] 2, LiChaolun 3, Jiao Yutian 1,Lu Yong 2   

  1. 1.Ocean University of China, Qingdao  266061, China; 2.Second Institute of Oceanography, State Oceanic Administration, Hangzhou  310012,China;3.Institute of Oceanology, Chinese Academy of Sciences, Qingdao  266071,China
  • Received:2009-07-06 Revised:2009-08-26 Online:2010-02-10 Published:2010-02-10

楚科奇海是北冰洋的陆架海,中部凸起的Herald浅滩对海水流动和海冰融化过程有显著影响。利用我国1999年夏季北冰洋考察数据,讨论了楚科奇海海冰融化过程中的海水结构。结果表明,海区内存在2个相继进入的水团,一个是海冰覆盖期进入的阿纳德尔水(AW),具有低温、高盐、高硅酸盐的特点;另一个是海冰融化后进入的白令海陆架水(BSW),具有高温、低盐、低硅酸盐的特点。在开阔水域,表层水温度达到7℃以上,高于当地气温,是当地太阳辐射的加热作用形成的。开阔海域的水体向冰下扩展,表层水温在1℃以上,形成冰下暖水区,加速了海冰的融化;Herald浅滩阻挡了海水的流动形成绕流,其北部处于绕流的死角,表层水温在-1℃以下,形成冰下冷水区。在开阔海域,上层海水的混合深度达到15~20 m,而渗入冰下的暖水深度小于5 m,体现了海冰对暖水渗入的阻滞作用。所有海冰覆盖站位10 m层的叶绿素a含量都很高,表明冰下海水处于浮游植物大量繁殖的状态,有可能对海水吸收热量和海冰融化产生显著的影响。

The Chukchi Sea is one of the marginal seas in the Arctic Ocean, where the sea ice cover varies seasonally. Herald Shoal located in the middle of the Chukchi Sea is a main feature of topography, and obviously impacts the flow and sea ice melting process. Data collected during the first Arctic cruise of China in the summer of 1999 are used to identify the water masses of Chukchi Sea around the Herald Shoal. Two water masses exist in this region. One is the Anadyr Water that entered in winter or spring with lower temperature, higher salinity and higher silicate. The other is the Bering Shelf Water with higher temperature, lower salinity and lower silicate. In open water, the maximum temperature in upper level reached 7℃, higher than local air temperature, which is speculated to cause by heating of local solar radiation. The water from open area inset under the ice cover to form a warm water region under ice with the temperature greater than 1℃, which leads to ice melting. Obstructed by the Herald Shoal, the northward flow bypassed the shoal and formed a cold water region under ice behind the shoal with the temperature lower than -1℃. Although the thickness of mixed layer in open water is about 15~20 m, the thickness of the warm water under ice is only 5~6 m, showing retarding of ice cover to the inset water. At the depth of 10 m under ice cover, the concentration of chlorophyll was higher in all stations, indicating the blooming under ice and impacting possibly on the heat absorption of water and ice melting.



中图分类号: 

[1] Perovich D K, Richter-Menge J A. Loss of sea ice in the Arctic[J].Annual Review of Marine Science,2009,1:417-441.
[2] Zhao Jinping,Li Tao,Zhang Shugang,et al. The shortwave solar radiation energy absorbed by packed sea ice in the Central Arctic[J].Advances in Earth Science,2009, 24(1): 35-41.[赵进平,李涛,张树刚,等.北冰洋中央密集冰区海冰对太阳短波辐射能吸收的观测研究[J].地球科学进展, 2009, 24(1): 35-41.]
[3] Zhao Jinping, Zhu Dayong, Shi Jiuxin. Seasonal variation of sea ice and its main driving factors in Chukchi Sea[J]. Advances in Marine Science,2003, 21(2): 123-131.[赵进平,朱大勇,史久新.楚科奇海海冰周年变化特征及其主要关联因素[J]. 海洋科学进展, 2003, 21(2): 123-131.]
[4] Overland J E, Roach A T. Northward flow in the Bering and Chukchi seas [J]. Journal of Geophysical Research,1987, 92(C7): 7 097-7 105.
[5] Woodgate R A, Aagaard K, Weingartner T. Monthly temperature, salinity, and transport variability of the Bering Strait throughflow[J].Geophysical Research Letters, 2005, 32, L04601, doi:10.1029/2004GL021880.[ZK)]
[6] Shimada K,Carmack E C, Hatakeyama K, et al.Varieties of shallow temperature maximum waters in the Western Canadian Basin of the Arctic Ocean[J].Geophysical Research Letters,2001, 28(18): 3 441-3 444.
[7] Paquette R G, Bourke R H. Ocean circulation and fronts as related to ice melt-back in the Chukchi Sea[J].Journal of Geophysical Research,1981,86(NC5):4 215-4 230.
[8] Coachman L K, Tripp R B. Currents north of Bering Strait in Winter[J].Limnology and Oceanography,1970, 15: 625-632.
[9] Weingartner T J, Cavalieri D J, Aagaard K, et al. Circulation, dense water formation, and outflow on the northeast Chukchi shelf[J].Journal of Geophysical Research,1998, 103(C4): 7 647-7 661.
[10] Weingartner T J, Aagaard K, Woodgate R A, et al. Circulation on the north central Chukchi Sea shelf[J].Deep-Sea Research II,2005, 52: 3 150-3 174.
[11] Martin S, Drucker R. The effect of possible Taylor columns on the summer ice retreat in the Chukchi Sea[J].Journal of Geophysical Research,1997,102(C5):10 473-10 482.
[12] Brabets T P, Wang B, Meade R H. Environmental and Hydrologic Overview of the Yukon River Basin, Alaska, and Canada[R].Water-Resources Investigations Report 99-4204, 2000:106.
[13] Shuert P G, Walsh J J. A coupled physical-biological model of the Bering-Chukchi Seas[J].Continental Shelf Research,1993, 13:543-573.
[14] Woodgate R A, Aagaard K. Revising the Bering Strait freshwater flux into the Arctic Ocean[J].Geophysical Research Letters,2005, 32,L02602, doi:10.1029/2004GL021747.
[15] Zhao J P, Shi J X, Gao G P, et al. Water mass of the northward throughflow in the Bering Strait in summer 2003 [J].Acta Oceanologica Sinica,2006, 25(2):1-8.
[16] Piatt J F, Springer A M. Advection, pelagic food webs and the biogeography of seabirds in Beringia[J].Marine Ornithology,2003, 31(2):141-154.
[17] Cooper L W, Whitledge T E, Grebmeier J M,et al.The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait[J].Journal of Geophysical Research,1997, 102(C6):12 563-12 573.
[18] Codispoti L A, Flagg C, Kelly V,et al.Hydrographic conditions during the 2002 SBI process experiments[J].Deep-Sea Research II,2005, 52: 3 199-3 226.
[19] Whitledge T E, Luchin V A. Summary of chemical distributions and dynamics in the Bering Sea[C]//Loughlin T R, Ohtani K, eds.Dynamics of the Bering Sea. University of Alaska Sea Grant, 1999:217-249.
[20] Jin M M. Vertical properties of nutrients and oxygen under temperature-salinity structure of the Bering Basin in July 1999[J].Chinese Journal of Polar Science,2002,12:145-156.
[21] Körtzinger A,Koeve W, Kähler P, et al. C∶N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean[J].Deep-Sea Research I,2001,48:661-688.
[22] Pickart R S, Weingartner T J, Pratt L J,et al.Flow of winter-transformed Pacific water into the Western Arctic[J].Deep-Sea Research II,2005, 52:3 175-3 198.
[23] Coachman L K, Aagaard K, Tripp R B. Bering Strait: The Regional Physical Oceanography[M]. Seattle:University of Washington Press,1975:172.

[1] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[2] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[3] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[4] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[5] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[6] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[7] 刘春颖, 刘欢欢, 杨桂朋, 王莉莉, 张升辉. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.
[8] 王永强,张招崇,徐培苍,刘民武. 硅酸盐熔体结构的研究进展和问题[J]. 地球科学进展, 1999, 14(2): 168-171.
[9] 刘建明. 成矿组分沉积同生富集的一种新机制:动态海水团的混合过程[J]. 地球科学进展, 1994, 9(2): 24-28.
阅读次数
全文


摘要