Please wait a minute...
img img
高级检索
地球科学进展  2010, Vol. 25 Issue (10): 1051-1060    DOI: 10.11867/j.issn.1001-8166.2010.10.1051
综述与评述     
云相态的卫星遥感研究进展
任建奇1,严卫1,叶晶2,韩丁1
1.解放军理工大学气象学院,江苏南京 211101;2.北京大学物理学院大气科学系,北京 100871
Advances in the Study of Cloud Phase Discrimination Using Satellite Remote Sensing Data
Ren Jianqi1, Yan Wei1, Ye Jing2, Han Ding1
1. Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101, China;
2. Department of Atmospheric Sciencs , School of Physics , Peking University , Beijing 100871, China
 全文: PDF(39699 KB)  
摘要:

云相态不仅是气象学和气候学研究的重要参量,也是卫星云参数反演的关键要素,其识别的准确性直接关系到光学厚度、有效粒子半径等光学和微物理参数的反演精度。卫星遥感技术的发展为云相态的识别提供了前所未有的技术手段。对能够提取云相态信息的主要星载遥感源进行了介绍,重点总结了近30年来国内外利用星载被动光学遥感资料、偏振辐射资料以及主动雷达资料进行云相态反演的基本原理、方法以及技术特点,最后针对目前云相态反演工作中存在的一些问题和发展趋势进行了探讨。

关键词: 卫星遥感云相态反演算法    
Abstract:

Cloud phase is not only a key meteorological and climatological variable, but also an important research content about cloud physics parameter retrieving using satellite remote sensing data, and its determination is also a necessary step in the retrieval of cloud particle size, optical thickness and other cloud microphysics parameters. The development of satellite remote sensing technology provides an unprecedented method for cloud phase discrimination research. This paper introduces the main sources of satellite remote sensors which can detect cloud phase information. It summaizes the physical principles and discrimination methods based on spaceborne passive optics and polarized radiance and active radar remote sensing data particularly. At last, Advantages and disadvantages of different satellite remote sensor also have been given and the prospects have been discussed for future cloud phase discrimination work which will be good for cloud physics parameter retrieving research.

Key words: Satellite Remote Sensing    Cloud Phase    Retrieving Method. Satellite Remote Sensing    Cloud Phase    Retrieving Method. Satellite Remote Sensing    Cloud Phase    Retrieving Method. Satellite Remote Sensing    Cloud Phase    Retrieving Method
收稿日期: 2010-03-17 出版日期: 2010-10-10
:  P426.5  
基金资助:

国家自然科学基金项目“东亚区域海气系统位相关系的诊断和模拟研究”(编号:40675065) 资助.

通讯作者: 任建奇     E-mail: renjianqi81@126.com
作者简介: 任建奇(1981-),男,河北怀来人,博士研究生,主要从事卫星云参数反演研究. E-mail:renjianqi81@126.com 
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

任建奇,严卫,叶晶,韩丁. 云相态的卫星遥感研究进展[J]. 地球科学进展, 2010, 25(10): 1051-1060.

Ren Jianqi, Yan Wei, Ye Jing, Han Ding. Advances in the Study of Cloud Phase Discrimination Using Satellite Remote Sensing Data. Advances in Earth Science, 2010, 25(10): 1051-1060.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2010.10.1051        http://www.adearth.ac.cn/CN/Y2010/V25/I10/1051

[1] Wang Fang, Ding Yihui. An evaluation of cloud radiative feedback mechanisms in climate models[J].Adcances in Earth Science, 2005, 20(2): 207-215.[汪方, 丁一汇. 气候模式中云辐射反馈过程机理的评述[J]. 地球科学进展, 2005, 20(2): 207-215.]
[2] Duan Jing, Mao Jietai. Progress in researches on interaction between aerosol and cloud[J].Adcances in Earth Science, 2008, 23(3): 252-261.[段婧, 毛节泰. 气溶胶与云相互作用的研究进展[J]. 地球科学进展, 2008, 23(3): 252-261.]
[3] Zhong Lingzhi, Liu Liping, Ge Runsheng. Characteristics about the millimeter wavelength radar and its status and prospect in and abroad[J]. Adcances in Earth Science,2009, 24(4): 383-391.[仲凌志, 刘黎平, 葛润生. 毫米波测云雷达的特点及其研究现状与展望[J]. 地球科学进展, 2009, 24(4): 383-391.]
[4] Cho H-M, Nasiri S L, Yang P. Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS Infrared channels[J].Journal of Applied Meteorology and Climatology,2009, 48(10): 2 169-2 180.
[5] Riedi J, Marchant B, Platnick S, et al. Cloud thermodynamic phase inferred from merged POLDER and MODIS data[J]. Atmospheric Chemistry and Physics Discussions,2007, 7(5):14 103-14 137.
[6] Wang Hongfang, Liu Jianwen, Ji Fei, et al. Operational forecast technique of aircraft icing[J].Meteorological Science and Technolog,2003, 31(3): 140-145.[王洪芳, 刘健文, 纪飞, 等. 飞机积冰业务预报技术研究[J]. 气象科技, 2003, 31(3): 140-145.]
[7] Wolters Erwin L A, Roebeling Robert A, Arnout J Feijt. Evaluation of cloud-phase retrieval methods for SEVIRI on Meteosat-8 using ground-based lidar and cloud radar data[J].Journal of Applied Meteorology and Climatology, 2008, 47(6): 1 723-1 737.
[8] Miller S D, Hawkins J D, Turk F J, et al. Previewing NPOESS/VIIRS imagery capabilities[J].Bulletin of the American Meteorological Society,2006, 87(4): 433-446.
[9] Yang P, Wei H L, Baum B A, et al. The spectral signature of mixed-phase clouds composed of non-spherical ice crystals and spherical liquid droplets in the terrestrial window region[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2003, 7980: 1 171-1 188.
[10] Strabala K I, Ackerman S A. Cloud properties inferred from 8-12 micron data[J].Journal of Applied Meteorology,1994, 33(2): 212-229.
[11] Warren S G. Optical constants of ice from the ultraviolet to the microwave[J].Applied Optics,1984, 23(8): 1 206-1 225.
[12] Ackerman S A, Smith W L, Revercomb H E. The 27-28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8-12 micron window[J].Month Weather Review,1990, 118(11): 2 377-2 388.
[13] Baum B A, Soulen P F, Strabala K I, et al. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 2. Cloud thermodynamic phase[J].Journal of Geophysical Research,2000, 105(D9): 11 781-11 792.
[14] Platnick S E, King M D, Ackerman S A, et al. The MODIS cloud products: Algorithms and examples from Terra[J].IEEE Transactions on Geoscience and Remote Sensing,2003, 41(2): 459-473.
[15] Key J R, Intrieri J M. Cloud particle phase determination with AVHRR[J].Journal of Applied Meteorology,2000, 39(10): 1797-1804.
[16] Rossow W B, Schiffer R A. Advances in understanding clouds from ISCCP[J].Bulletin of the American Meteorological Society, 1999, 80(11): 2 261-2 287.
[17] Nasiri S L, Kahn B H, Baum B. Improvement of cloud thermodynamic phase assessment using infrared hyperspectral measurements[C]//Optical Society of America Hyperspectral Imaging and Sounding of Environment Topical Meeting. Santa Fe, New Mexico, 2007: 1-3.
[18] Nasiri S L, Kahn B H. Limitations of bispectral infrared cloud phase determination and potential for improvement[J].Journal of Applied Meteorology and Climatology,2008, 47(11): 2 895-2 910.
[19] Nasiri S L, Kahn B H, Jin H. Progress in infrared cloud phase determination using AIRS[C]//Optical Society of America Hyperspectral Imaging and Sounding of the Environment Conference. Vancouver, Canada, 2009.
[20] Rathke C, Fischer J, Neshyba S, et al. Improving IR cloud phase determination with 20 microns spectral observations[J]. Geophysical Research Letters,2002, 29(8): 501-504.
[21] Knap W H, Stammes P, Koelemeijer R B A. Cloud thermodynamic phase determination from near infrared spectra of reflected sunlight[J].Journal of Atmosphere Science,2002, 59(1): 83-96.
[22] Pilewskie P, Twomey S. Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm[J].Journal of Atmosphere Science,1987, 44(22): 3 410-3 420.
[23] King M D, Platnick S, Yang P, et al. Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data[J].Journal of Atmospheric and Oceanic Technology,2004, 21(6): 857-875.
[24] Acarreta J R, Stammes P, Knap W H. First retrieval of cloud phase from SCIAMACHY spectra around 1.6 μm[J]. Atmospheric Research,2004, 72(1/4): 89-105.
[25] Kokhanovsky A A, HoyningenHuene W, Rozanov V V, et al. The semianalytical cloud retrieval algorithm for SCIAMACHY II. The application to MERIS and SCIAMACHY data[J].Atmospheric Chemistry and Physics Discussions,2006, 6: 1 813-1 840.
[26] Arking A, Childs J D. Retrieval of cloud cover parameters from multispectral satellite images[J].Journal of Climate and Applied Meteorology,1985, 24(4): 322-333.
[27] Hutchison K D, Etherton B J, Topping P C. Validation of automated cloud top phase algorithms: Distinguishing between cirrus clouds and snow in a priori analyses of AVHRR imagery[J].Optical engineering,1997, 36(6): 1 727-1 737.
[28] Baum B A,  Spinhirne J D. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 3. Cloud overlap[J].Journal of Geophysical Research,2000, 105(D9): 11 793-11 804.
[29] Zhou Zhuhua, Bai Jie, Liu Jianwen, et al. The application of cloud phase recognition by MODIS spectral data[J].Journal of Applied Meteorology,2005, 16(5): 678-685.[周著华, 白洁, 刘健文, 等. MODIS多光谱云相态识别技术的应用研究[J]. 应用气象学报, 2005, 16(5): 678-685.]
[30] Zhou Zhuhua, Bai Jie, Liu Jianwen, et al. The cloud phase analysis of typhoon “Noguri” using EOS/MODIS data[J].Scientia Meteorologica Sinica,2006, 26(5): 494-501.[周著华, 白洁, 刘健文, 等. 基于EOS/MODIS的台风“浣熊”云顶相态分析[J].气象科学, 2006, 26(5): 494-501.]
[31] Sheng Xia, Sun Longxiang, Zheng Qingmei. Research on cloud detection using MODIS data[J].Journal of PLA University of Science and Technology,2008, 9(1): 98-102.[盛夏, 孙龙翔, 郑庆梅.模拟退火优化BP神经网络进行云相态分类[J]. 解放军理工大学学报, 2008, 9(1): 98-102.]
[32] Kokhanovsky A A, Jourdan O, Burrows J P. The cloud phase discrimination from a satellite[J].IEEE Transactions on Geosciences and Remote Sensing Letters,2006, 3(1): 103-106.
[33] Jolivet D, Feijt A J. Cloud thermodynamic phase and particle size estimation using the 0.67 and 1.6 μm channels from meteorological satellites[J].Atmospheric Chemistry and Physics Discussions,2003, 3(4): 4 461-4 488.
[34] Schulz J, Albert P, Behr H-D, et al. Operational climate monitoring from space: The EUMETSAT satellite application facility on climate monitoring (CM-SAF)[J].Atmospheric Chemistry and Physics Discussions,2009, 9(5): 1 687-1 709.
[35] Liu Jian, Dong Chaohua, Zhu Yuanjing,et al. Thermodynamic phase analysis of cloud particles with FY-1C data[J].Chinese Journal of Atmospheric Sciences,2003, 27(5): 901-908.[刘健, 董超华, 朱元竞, 等. FY-1C资料在云顶粒子热力学相态分析中的应用研究[J]. 大气科学, 2003, 27(5): 901-908.]
[36] Wolters E L A, Deneke H M, Meirink J F, et al. Impact of broken and inhomogeneous clouds in satellite cloud-phase retrieval[J].Journal of Geophysical Research,2010, 115(d10): D10214-1-D10214-14.
[37] Goloub P, Deuze J L, Herman M, et al. Analysis of the POLDER airborne polarization measurements performed over cloud covers[J].IEEE Transactions on Geoscience and Remote Sensing,1994, 32(1): 78-87.
[38] Chepfer H, Brogniez G, Fouquart Y. Cirrus clouds microphysical properties deduced from POLDER observations[J].Journal of Quantitative Spectroscopy & Radiative transfer,1998, 30(11): 375-390.
[39] Deschamps P Y, Bréon F M, Leroy M, et al. The POLDER mission: Instrument characteristics and scientific objectives[J]. IEEE Transactions on Geoscience and Remote Sensing,1994, 32(3): 598-615.
[40] Chepfer H, Goloub P, Riedi J, et al. Ice crystal shapes in cirrus clouds derived from POLDER-1/ADEOS-1[J].Journal of Geophysical Research,2001, 106(D8): 7 955-7 966.
[41] Bréon F M, Goloub P. Cloud droplet effective radius from spaceborne polarization measurements[J].Geophysical Research Letters,1998, 25(11): 1 879-1 882.
[42] Gloub P, Herman M, Chepfer H, et al. Cloud thermodynamic phase classification from the POLDER spaceborne instrument[J]. Journal of Geophysical Research, 2000, 105(D11): 14 747-14 759.
[43] Riédi J C, Goloub P, Marchand R T. Comparison of POLDER cloud phase retrievals to active remote sensor measurements at the ARM SGP site[J].Geophysical Research Letters,2001, 28(11): 2 185-2 188.
[44] Riedi J, Doutriaux-Boucher M, Goloub P, et al. Global distribution of cloud top phase from POLDER/ADEOS Ⅰ[J]. Geophysical Research Letters, 2000, 27(12): 1 707-1 710.
[45] Doutriaux-Boucher M, Quaas J. Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER satellite data[J].Geophysical Research Letters,2004, 31(6): 6 126-6 130.
[46] Yasumoto M, Mukai S. Retreieval of cloud thermodynamic phase from ADEOS/POLDER and OCTS data[J].Science and Technology,2002, 14(5): 35-40.
[47] Yasumoto M, Sano I, Mukai S. Combined use of OCTS and POLDER for cloud retrieval[J].Advances in Space Research, 2002, 29(1): 39-44.
[48] Giraud V, Buriez J C, Fouquartet Y, et al. Analysis of direct comparison of cloud top temperature and infrared split window signature against independant retrievals of cloud thermodynamic phase[J].Geophysical Research Letters,2001, 28(6): 983-986.
[49] Cheng Tianhai, Chen Liangfu, Gu Xingfa, et al. Cloud phase classification and validation based on multi-angular polarized characteristics of cloud[J].Acta Optica Sinica,2008, 28(10): 1 849-1 855.[程天海, 陈良富, 顾行发, 等. 基于多角度偏振特性的云相态识别及验证[J]. 光学学报, 2008, 28(10): 1 849-1 855.]
[50] Schotland R, Sassen M K, Stone R. Observations by lidar of linear depolarization ratios for hydrometers[J].Journal of Applied Meteorology,1971, 10(5): 1 011-1 017.
[51] Hu Y, Winker D, Yang P, et al. Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2001, 70(4): 569-579.
[52] Hu Y, Vaughan M, Liu Z, et al. The depolarization attenuated backscatter relation: CALIPSO lidar measurements vs. theory[J].Optics Express,2007, 15(9): 5 327-5 332.
[53] Hu Y. Depolarization Ratio Effective Lidar Ratio Relation: Theoretical basis for space lidar cloud phase discrimination[J].Geophysical Research Letters, 2007, 34 (11): 11 812-111 812-4.
[54] Hu Y, Winker D, Vaughan M, et al. CALIPSO/CALIOP cloud phase discrimination algorithm[J].Journal of Atmospheric and Oceanic Technology,2009, 26(11): 2 293-2 309.
[55] Yan Wei, Yang Hanle, Ye Jing. Analysis of cloud properties based on satellite-borne millimeter cloud radar measurements[J].Journal of Remote sensing, 2009, 13(4): 575-579.[严卫, 杨汉乐, 叶晶. 星载毫米波测云雷达资料的云特征分析[J]. 遥感学报, 2009, 13(4): 575-579.]
[56] Chylek P, Robinson S, Dubey M K,et al. Comparison of near-infrared and thermal infrared cloud phase detections[J].Journal of Geophysical Research,2006, 111(d20): D20203-1-D20203-8.

[1] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[2] 陈洪萍, 贾根锁, 冯锦明, 董燕生. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.
[3] 牟龙江,赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709-717.
[4] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[5] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[6] 崔月菊,杜建国,陈志,李静,谢超,周晓成,刘雷. 2010年玉树Ms 7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794.
[7] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[8] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[9] 付红丽,赵进平. 白令海冰间湖的数值模拟及影响模拟准确度的关键因素[J]. 地球科学进展, 2009, 24(5): 538-548.
[10] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[11] H.Ishikawa,K.Tanaka,Y.Oku,马耀明,胡泽勇,李茂善,马伟强. 利用场地观测计算地表通量[J]. 地球科学进展, 2006, 21(12): 1237-1243.
[12] 姚清林;强祖基;王弋平. 青藏高原地震前CO的排放与卫星热红外增温异常[J]. 地球科学进展, 2005, 20(5): 505-510.
[13] 王开存;周秀骥;李维亮;刘晶淼;王普才. 利用卫星遥感资料反演感热和潜热通量的研究综述[J]. 地球科学进展, 2005, 20(1): 42-048.
[14] 马建文;田国良;王长耀;燕守勋. 遥感变化检测技术发展综述[J]. 地球科学进展, 2004, 19(2): 192-196.
[15] 范一大,史培军,罗敬宁. 沙尘暴卫星遥感研究进展[J]. 地球科学进展, 2003, 18(3): 367-373.