地球科学进展 ›› 2008, Vol. 23 ›› Issue (11): 1115 -1123. doi: 10.11867/j.issn.1001-8166.2008.11.1115

探索与争鸣    下一篇

湖泊蓝藻水华生态灾害形成机理及防治的基础研究
吴庆龙 1,谢平 2,杨柳燕 3,高光 1,刘正文 1,潘纲 4,朱本占 5   
  1. (1.中国科学院南京地理与湖泊研究所,湖泊与环境国家重点实验室,江苏 南京 210008;2.中国科学院水生生物研究所,淡水生态与生物技术国家重点实验室,湖北 武汉 430072;3.南京大学,污染控制与资源化研究国家重点实验室,江苏 南京 210092;4.中国科学院生态环境研究中心,环境水质学国家重点实验室, 北京 100085;5.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京 100085)
  • 收稿日期:2008-08-21 修回日期:2008-09-18 出版日期:2008-11-10
  • 通讯作者: 吴庆龙 E-mail:qlwu@niglas.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“湖泊蓝藻水华生态灾害形成机理及防治的基础研究”(编号:2008CB418100)资助

Ecological Consequences of Cyanobacetrial Blooms in Lakes and Their Countermeasures

WU Qinglong 1, XIE Ping 2, YANG Liuyan 3, GAO Guang 1,LIU Zhengwen 1, PAN Gang 4, ZHU Benzhan 5   

  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography andLimnology, Chinese Academy of Sciences, Nanjing 210008, China; 2.State Key Laboratory ofFreshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences,Wuhan 430072, China; 3.State Key Laboratory of Pollution Control and Resources Reuse, Collegeof Environmental Sciences and Engineering, Nanjing University, Nanjing 210092, China;4.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China;5.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China)
  • Received:2008-08-21 Revised:2008-09-18 Online:2008-11-10 Published:2008-11-10
  • Supported by:

    null

湖泊具有供水、渔业、旅游、维持区域生态系统平衡等功能,是支撑我国经济和社会发展的重要资源之一。但是近30年来,湖泊富营养化所导致的蓝藻水华频繁暴发,生态灾害事件频发,严重影响湖泊功能的发挥, 制约区域经济可持续发展。针对国家在保障区域水安全和生态安全、保护人民健康及建设和谐社会等方面的重大需求,国家重点基础研究发展计划项目“湖泊蓝藻水华生态灾害形成机理及防治的基础研究”于2008年7月正式立项。项目拟解决的关键科学问题包括:①湖泊蓝藻水华主要衍生污染物的形成机理、迁移转化规律和毒理效应;②蓝藻水华导致湖泊生态系统结构变化和功能退化的机理;③蓝藻水华生态灾害评估及调控机理。针对上述科学问题,项目以蓝藻水华污染物的产生、湖泊生态系统结构与功能的响应以及生态灾害的评估与调控为研究主线,重点开展以下几个方面的研究:①蓝藻水华衍生污染物的产生及其环境过程;②蓝藻水华衍生污染物的毒理效应与生态和健康风险;③蓝藻水华导致湖泊生态系统结构变化与功能退化的关键过程和机制;④蓝藻水华灾害治理和调控的的技术原理和途径。项目的实施和完成将为我国湖泊蓝藻水华生态灾害的预防与控制提供理论和技术原理支撑。

In the recent 30 years, cyanobacterial blooming has occurred frequently in lakes of the Yangtze river basin, especially in Lake Taihu, Chaohu, and Dianchi, which has severely affected the functioning of these lake ecosystems. Cyanobacterial blooming in lakes has certainly become a major challenge to the sustainable development of regional economy in China, which needs urgent solutions. Although the environmental problems generated by cyanobacterial blooming has got more and more attention, the mechanism of ecological catastrophe driven by the blooming is unclear until now. Most studies have been focusing on the occurrence of cyanobacterial blooms in the last decades. The current project aims to reveal the mechanism of ecological catastrophe induced from cyanobacterial blooms and to find practical means to control the negative impacts. Three key questions will be addressed in this project, which include: ①development, environmental process, fate, and toxicological effects of pollutants derived from cyanobacterial blooms; ②regime shift and functional change of lake ecosystems induced by cyanobacterial blooms; ③evaluation and control mechanism of ecological catastrophe caused by the blooms. Lake Taihu, Chaohu, and Dianchi will be chosen for a comprehensive and comparative study. The project will focus on the pollution mechanisms of cyanobacterial blooms, subsequent response of lake ecosystems, and thus the corresponding means reducing these negative impacts. Major research contents include the formation, environmental process, and fate of derivate pollutants from cyanobacterial blooms, ecotoxicological effect of major pollutants and safety of water quality, key process and change of lake ecosystems in response to cyanobacterial blooming. Based on these studies, new methods and principles for reducing the negative impacts will be studied and promoted. This study will finally have implications for ensuring the safety of regional ecology and sustainable development of regional economy. This study may also have contributions to the knowledge about ecology of keynote species, ecological resilience and catastrophic ecology.

中图分类号: 

[1] Horne A J,Goldman C R. Limonology2nd[M]. New York:McGraw Hill Inc.,1994.

[2] Scheffer M,Hosper H,Meijer M L,et al. Alternative equilibria in shallow lakes[J]. Trends in Ecology and Evolution,1993,8:275-279.

[3] Scheffer M,Carpenter S,Foley J A,et al. Catastrophic shifts in ecosystems[J]. Nature, 2001,413:591-596.

[4] Capone D G,Zehr J P,Paerl H W,et al. Trichodesmium,a globally significant marine cyanobacterium[J]. Science, 1997,276:1 221-1 229.

[5] Codd G A,Morrison L F,Metcalf J S. Cyanobacterial toxins:Risk management for health protection[J]. Toxicology and Applied Pharmacy,2005,203:264-272.

[6] Xie L,Xie P,Guo L,et al. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu,China[J]. Environmental Toxicology,2005,20:293-300.

[7] Chen J,Xie P,Guo L G,et al. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and-RR in a freshwater snailBellamya aeruginosa from a large shallow, eutrophic lake of the subtropical China[J]. Environmental Pollution,2005,134:423-430.

[8] Hu Q. Chapter 5:Environmental effects on cell composition[C]Richmond A,ed. Handbook of Microalgal Culture. Oxford:Blackwell Science Ltd.,2004:83-93.

[9] Li L,Wan N,Gan N,et al. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi,China[J]. Water Science and Technology,2007,55:43-50.

[10] Petersen H G,Hrudey S E,Cantin I A,et al. Physiological toxicity,cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon Flos-aquae after exposure to water treatment chemicals[J]. Water Research,1995,29:1 515-1 523.

[11] Valavanidis A,Vlahogianni T,Dassenakis M,et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotoxicology and Environmental Safety,2006,642:178-189.

[12] Solmp C P,Thomson J,De Lange G J. Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropelS1[J]. Geochimica Cosmochimica Acta,2002,66:1 171-1 184.

[13] Fan C,Zhang L,Qu W. Lake sediment resuspension and caused phosphate release—A simulation study[J]. Journal of Environmental Science,2001,134:406-410.

[14] Blackburn N,Fenchel T,Mitchell J G. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria[J]. Science,1998,282:2 254-2 256.

[15] Hens M,Merckx R. The role of colloidal particles in the speciation and analysis of “dissolved” phosphorus[J]. Water Research,2002,36:1 483-1 492.

[16] Herndl G J. Ecology of amorphous aggregationsmarine snow in the Northern Adriatic Sea. . Microbial density and activity in marine snow and its implication to overall pelagic processes[J]. Marine Ecology Progress Seriers,1998,48:265-275.

[17] Mitchell J G,Pearson L,Dillon S,et al. Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations[J]. Appled and Environmental Microbiology,1995,61:4 436-4 440.

[18] Worm J,S ø ndergaard M. Dynamics of heterotrophic bacteria attached to Microcystis spp.Cyanobacteria[J]. Aquatic Microbial Ecology,1998,14:19-28.

[19] Xie L,Xie P,Tang H,et al. The low TN:TP ratio,a cause or a result of Microcystis blooms?[J]. Water Research,2003,37:2 073-2 080.

[20] Wu Q L,Chen Y W,Xu K D,et al. Intra-habitat heterogeneity of the microbial food web structure under the regime of eutrophication and sediment resuspension in the large subtropical shallow Lake Taihu[J]. Hydrobiologia,2007,581:241-254.

[21] Yin L,Huang J,Li D,et al. Microcystin-RR uptake and its effects on the growth of submerged macrophyte Vallisneria natanslour. hara[J]. Environmental Toxicology,2005,203:308-313.

[22] Hargeby A,Andersson G,Blindow I,et al. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes[J]. Hydrobiologia,1994,279/280:83-90.

[23] Chen F,Xie P. The toxicities of single-celled Microcystis aeruginosa PCC7820 and liberated-M. aeruginosa to-Daphnia carinata-in the absence and present of the green alga Scenedesmus obliquus[J]. Journal of Freshwater Ecology,2004,19:539-545.

[24] Ferrão-filho A S,Fileto C,Lopes N P,et al. Effects of essential fatty acids and N and P-limited algae on the growth rate of tropical cladocerans[J]. Freshwater Biology,2003,48:759-767.

[25] Gilbert J J. Susceptibility of planktonic rotifers to a toxic strain of Anabaena flos-aquae[J]. Limnology and Oceanography,1994,39:1 286-1 297.

[26] Guo N,Xie P. Development of tolerance against toxic Microcystis eruginosa in three cladocerans and the ecological implications[J]. Environmental Pollution,2006,143:513-518.

[27] Lürling M. Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with green alga Scenedesmus obliquus[J]. Limnology and Oceanography,2003,48:2 214-2 220.

[28] Lemke A M,Lemke M J,Benke A C. Importance of detrital algae, bacteria, and organic matter to littoral microcrustacean growth and reproduction[J]. Limnology and Oceanography,2007,52:2 164-2 176.

[29] Vadeboncoeur Y,Jeppesen E,Zanden M J V,et al. From green land to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes[J]. Limnology and Oceanography,2003,484:1 408-1 418.

[30] White S H,Duivenvoorden L J,Fabbro L D. Impacts of a toxic Microcystic bloom on the macroinvertebrate fauna of Lake Elphinstone,central Queensland, Australia[J]. Hydrobiologia,2005,548:117-126.

[31] Tammi J,Lappalainen A,Mannio J,et al. Effects of eutrophication on fish and fisheries in Finnish lakes:A survey based on random sampling[J]. Fishery Management and Ecology,1999,6:173-186.

[32] Anderson D M. Turning back the harmful red tide[J]. Nature,1997,388:513-514.

[33] Pan G,Zhang M,Chen H,et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Pollution,2006,141:195-200.

[34] Pan G,Zou H,Chen H,et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils[J]. Environmental Pollution,2006,141:206-212.

[35] Chen Q,Mynett A E,Minns A W. Application of cellular automata to modeling competitive growth of two underwater species C. aspera and P. pectinatus-in Lake Veluwe[J]. Ecological Modeling,2002,147:253-265.

[36] Giusti E,Marsili-Libelli S. An integrated model for the Orbetello lagoon ecosystem[J]. Ecological Modeling,2006,196:379-394.

[37] Hu W P,J rgensen S E,Zhang F B. A vertical-compressed three-dimensional ecological model in Lake Taihu,China[J]. Ecological Modeling,2006,190:367-398.

[1] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[2] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[3] 龙花楼, 曲艺, 屠爽爽, 李裕瑞, 戈大专, 张英男, 马历, 王文杰, 王婧. 城镇化背景下中国农区土地利用转型及其环境效应研究:进展与展望[J]. 地球科学进展, 2018, 33(5): 455-463.
[4] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
[5] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[6] 兰晨, 陈敬安, 曾艳, 郭建阳, 张润宇, 王敬富, 杨海全, 计永雪. 深水湖泊增氧理论与技术研究进展[J]. 地球科学进展, 2015, 30(10): 1172-1181.
[7] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[8] 任晓倩,孙菽芬,陈 文,刘辉志. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013, 28(3): 347-356.
[9] 孙 松. 水母暴发研究所面临的挑战[J]. 地球科学进展, 2012, 27(3): 257-261.
[10] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[11] 张家武,何晶,陈硕,李双. 第四纪湖相介形类壳体化石在古环境中的应用——种属组合研究进展与问题[J]. 地球科学进展, 2009, 24(11): 1229-1237.
[12] 严登华,王浩,杨舒媛,刘明国,霍竹. 干旱区流域生态水文耦合模拟与调控的若干思考[J]. 地球科学进展, 2008, 23(7): 773-778.
[13] 张永民,赵士洞. 生态系统与人类健康[J]. 地球科学进展, 2008, 23(6): 644-650.
[14] 申慧彦,李世杰. 湖泊沉积物中DNA提取与PCR扩增[J]. 地球科学进展, 2008, 23(4): 433-438.
[15] 秦伯强,王小冬,汤祥明,冯胜,张运林. 太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J]. 地球科学进展, 2007, 22(9): 896-906.
阅读次数
全文


摘要