地球科学进展 doi: 10.11867/j.issn.1001-8166.2026.010

   

基于深度学习和小波变换的被动微波遥感雪深反演
赵欣冉1,2,尤元红1,2,黄春林3,4,唐志光5,汪左1,2,侯金亮3   
  1. (1. 安徽师范大学 地理与旅游学院,安徽 芜湖 241002;2. 资源环境与地理信息工程 安徽省工程技术研究中心,安徽 芜湖 241002;3. 中国科学院西北生态环境资源研究院,甘肃省遥感重点实验室,甘肃 兰州 730000;4.兰州交通大学 测绘与地理信息学院,甘肃 兰州 730000;5.湖南科技大学地理空间信息技术国家地方联合工程实验室,湖南 湘潭 411201)
  • 基金资助:
    国家自然科学基金项目(编号:42130113,42371398);测绘遥感信息工程湖南省重点实验室开放基金项目(编号:E22405)资助.

Microwave Remote Sensing of Snow Depth Based on Deep Learning Models and Wavelet Transform

Zhao Xinran1, 2, You Yuanhong1, 2*, Huang Chunlin3, 4, Tang Zhiguang5,Wang Zuo1, 2, Hou Jinliang3   

  1. (1. School of Geography and Tourism, Anhui Normal University, Wuhu Anhui 241002, China; 2. Anhui Provincial Engineering Research Center for Resources, Environment and Geographic Information Systems, Wuhu Anhui 241002, China; 3. Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; 4. School of Geomatics and Geoinformation,Lanzhou Jiaotong University, Lanzhou 730000, China; 5. National-Local Joint Engineering Laboratory of Geospatial Information Technology, Hunan University of Science and Technology, Xiangtan Hunan 411201, China)
  • About author:Zhao Xinra, research areas include snow depth retrieval, deep learning, and multi-source remote sensing data assimilation.E-mail: xinranzhao@anhu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. 42130113, 42371398); the Open Fund of Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Remote Sensing and Information Engineering (Grant No. E22405).
微波亮温与雪深之间的关系十分复杂,地形和积雪状态的多变性对其影响十分显著,传统方法难以精确反演。为有效解决微波亮温与雪深之间的复杂非线性关系,提出了一种融合小波变换与残差卷积神经网络的被动微波雪深反演模型,利用小波变换提取多频微波亮温的多尺度特征,以表征雪深的整体变化与局地扰动,并通过残差结构提升深层特征传递与非线性拟合能力。在此基础上,选取北半球不同积雪气候类型下的代表性站点评估了该模型在不同积雪气候类型中的适用性。结果表明,融合小波变换与残差卷积神经网络模型在站点尺度实验中,雪深反演的均方根误差为0.23 m,相关系数为0.93,平均偏差为0.01 m,纳什效率系数为0.86,各项误差统计指标相较于传统卷积神经网络和残差卷积神经网络模型均有较大改善。不同积雪深度下的性能均优于传统深度学习模型,且该模型在积雪较厚和变化较快时能够表现出更准确的估算能力。此外,该模型在不同积雪气候类型下的时序响应能力和空间迁移性能均优于雪深反演产品,可以为不同积雪气候类型下的雪深监测提供参考依据。
Abstract: Accurate retrieval of snow depth from passive microwave observations remains a major challenge because of the pronounced nonlinearity between microwave brightness temperature and snow physical properties, which is further modulated by complex terrain and the temporal evolution of snowpacks. Conventional retrieval approaches, including physically based radiative transfer models, are often constrained by high computational costs and strong sensitivity to uncertain input parameters, resulting in degraded performance under heterogeneous snow conditions and across different snow climate regimes. To overcome these limitations, this study develops a passive microwave snow depth retrieval model that integrates wavelet transform with a residual convolutional neural network (Wavedec-ResNet-CNN) to better represent multi-scale features and complex nonlinear relationships. Specifically, the wavelet transform is applied to multi-frequency brightness temperature observations to extract scale-dependent information, allowing the model to capture both large-scale snow depth variability and localized perturbations associated with rapid snow accumulation and melt processes. The resulting multi-scale features are then ingested into a residual convolutional neural network, in which residual connections facilitate deep feature propagation and enhance nonlinear fitting capability while mitigating performance degradation in deep architectures. The proposed model is evaluated using representative groundbased stations spanning different snow climate classes in the Northern Hemisphere to assess its applicability under diverse snow conditions at the site scale. Model performance is quantified using multiple statistical metrics, including root mean square error (RMSE), correlation coefficient (R), mean bias, and Nash-Sutcliffe efficiency (NSE), and is benchmarked against conventional convolutional neural network and residual convolutional neural network models. The results show that the Wavedec-ResNet-CNN achieves an RMSE of 0.23 m, an R of 0.93, a mean bias of 0.01 m, and an NSE of 0.86, indicating consistent improvements over the reference deep learning models across all evaluation metrics. Additional analyses demonstrate that the proposed model outperforms traditional deep learning approaches across a wide range of snow depths, with particularly notable gains during periods of deep snow accumulation and rapid snow depth changes. Furthermore, compared with existing snow depth retrieval products, the model exhibits enhanced temporal responsiveness and improved spatial transferability across different snow climate types, highlighting its potential for robust passive microwave snow depth monitoring in regions with diverse snow regimes.

中图分类号: 

[1] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[2] 祁晓凡,杨丽芝,韩 晔,尚 浩,邢立亭. 济南泉域地下水位动态及其对降水响应的交叉小波分析[J]. 地球科学进展, 2012, 27(9): 969-978.
[3] 罗坚,姜勇强,戴彩悌. 提升小波变换在气象格点数据无损压缩中的应用[J]. 地球科学进展, 2012, 27(4): 460-465.
[4] 王国栋, 康建成, Han Guoqi, 刘超, 闫国东. 中国东海海平面变化多尺度周期分析与预测[J]. 地球科学进展, 2011, 26(6): 678-684.
[5] 窦燕,陈曦. 基于站点的中国天山山区积雪要素变化研究[J]. 地球科学进展, 2011, 26(4): 441-448.
[6] 吴兆福,高飞,陶庭叶. 小波变换后的噪声信息在大坝变形监测精度评定中的应用[J]. 地球科学进展, 2008, 23(6): 590-594.
[7] 孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.
[8] 吴兆福;高飞;宫鹏. 基于边缘特征的遥感影像小波变换融合法[J]. 地球科学进展, 2005, 20(7): 705-709.
[9] 陈仁升,康尔泗,张济世. 小波变换在河西地区水文和气候周期变化分析中的应用[J]. 地球科学进展, 2001, 16(3): 339-345.
阅读次数
全文


摘要