地球科学进展 doi: 10.11867/j.issn.1001-8166.2026.004

   

地表臭氧与植被相互作用的研究进展与展望
叶泽昱,周心易,乐旭   
  1. (气候系统预测与变化应对全国重点实验室,大气环境与装备技术协同创新中心,南京信息工程大学 环境科学与工程学院,江苏 南京 210044)
  • 基金资助:
    国家重点研发计划项目(编号:2023YFF0805403);国家自然科学基金项目(编号:42275128)资助.

Research Progress and Prospects on Surface Ozone-Vegetation Interactions

Ye Zeyu, Zhou Xinyi, Yue Xu   

  1. (State Key Laboratory of Climate System Prediction and Risk Management, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing, China 210044)
  • About author:Ye Zeyu, research areas include ozone ecological impacts. E-mail: 202312120022@nuist.edu.cn
  • Supported by:
    Project supported by the National Key Research and Development Program of China (Grant No. 2023YFF0805403); The National Natural Science Foundation of China (Grant No. 42275128).
地表臭氧与植被之间存在着深刻而复杂的双向反馈作用。一方面,臭氧通过叶片气孔进入植物体内,引发氧化应激反应并抑制光合作用,对全球粮食安全和森林健康构成严重威胁。另一方面,植被并非被动承受,它既是臭氧的“汇”(通过气孔吸收进行干沉降),也是其重要的“源”(通过排放生物源挥发性有机物参与光化学反应)。通过整合相关文献,系统量化了区域到全球尺度下臭氧对作物产量和陆地生产力的损伤作用,明确了植被通过源汇过程对臭氧污染的影响量 级,并揭示了臭氧—植被相互作用的关键机制,即臭氧胁迫导致植被气孔关闭,削弱了其清除臭氧的干沉降能力,反馈加剧地表臭氧污染。此外,臭氧诱导的气孔关闭还通过抑制蒸腾作用,改变地表能量平衡(潜热通量减少、感热通量增加),产生增温减湿的生物地球物理效应,进而反馈影响区域气候与大气化学过程。尽管现有研究已初步揭示了这些以正反馈为主导的耦合机制,但仍面临核心控制实验不确定、生态系统模型模拟能力不足以及对多因子协同胁迫认知有限等挑战。未来研究亟须整合多尺度观测、多因子控制实验与高性能耦合模式,以精确量化该系统内的复杂反馈,为协同治理臭氧污染与应对气候变化提供科学依据。
Abstract: Surface ozone (O3) and terrestrial vegetation has profound and complex interactions that exert strong influences on atmospheric chemistry, ecosystem productivity, and regional climate. As a phytotoxic oxidant, O3 enters plant tissues through stomata, triggering oxidative stress and impairing photosynthetic functions. These physiological disruptions further reduce crop yields and ecosystem productivity, posing substantial threats to global food security and terrestrial carbon sink. Current syntheses estimate that present-day O3 pollution reduces global land sink by 1.5~5%, with hotspots in eastern China and eastern U.S. Vegetation is not merely a passive recipient of O3 stress; rather, it actively modulates surface O3 concentrations through dual roles as both a sink and a source. On the one hand, stomatal uptake represents a major pathway for O3 dry deposition, accounting for approximately 45% of global O3 removal. On the other hand, vegetation emits biogenic volatile organic compounds (BVOCs), such as isoprene and monoterpenes, which act as key precursors for O3 formation under sunlight. Recent modeling studies suggest that BVOCs contribute more than 10% to summertime O3 concentrations in polluted regions such as China and U. S. A critical feedback arises from O3-vegetation coupling: elevated O3 induces stomatal closure as a protective response, which reduces the stomatal uptake of O3, weakens dry deposition, and ultimately enhances ambient O3 levels. In addition, O3-induced stomatal closure suppresses transpiration, altering surface energy partitioning by reducing latent heat flux and increasing sensible heat flux. These biophysical responses promote regional warming and drying, with consequent impacts on regional climate and hydrology, including temperature, humidity, precipitation, and runoff. For example, O3-vegetation interactions have been shown to increase summer surface temperatures by 0.2~0.8 K and reduce relative humidity by 3~9% in eastern China. Despite progress in experimental and modeling approaches, substantial uncertainties persist. These include limitations of controlled-exposure experiments, inconsistencies in O3 damage parameterizations, and incomplete understanding of interactions between O3 stress and co-occurring drivers such as elevated CO2, nitrogen deposition, and extreme climate events. Future research should prioritize integrated multi-scale observational networks, multifactor manipulative experiments, and advanced Earth system models that tightly couple atmospheric chemistry with dynamic vegetation processes. Improved quantification of the O3-vegetation-climate interaction is essential for developing coordinated strategies that jointly address air quality improvement and climate change adaptation.

中图分类号: 

[1] 陈锐, 吉喜斌, 赵文玥. 干旱胁迫下植物气孔导度估算模型研究进展与展望[J]. 地球科学进展, 2025, 40(9): 877-889.
[2] 金佳鑫, 张凤焰, 王焓, 刘颖, 侯炜烨, 蔡裕龙, 潘晓龙, 王颖, 朱求安, 方秀琴, 颜亦琪, 任立良. 常绿林“导度—光合”模型斜率参数优化与蒸腾估算改进[J]. 地球科学进展, 2023, 38(9): 931-942.
[3] 魏江峰, 宋媛媛, 逯博延. 华北降水日循环与陆气耦合和气溶胶联系的研究进展[J]. 地球科学进展, 2023, 38(9): 881-889.
[4] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
阅读次数
全文


摘要