地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.077

   

干旱胁迫下植物气孔导度估算模研究进展与展望
陈锐1,2,吉喜斌1*,赵文玥1,2   
  1. (1. 中国科学院西北生态环境资源研究院,临泽内陆河流域研究站,干旱区生态安全与可持续发展全国重点实验室,甘肃 兰州 730000;2. 中国科学院大学,北京 100049)
  • 基金资助:
    国家自然科学基金面上项目(编号:42271043);甘肃省优秀博士生项目(编号:24JRRA109)资助.

A Review of Research Advances and Future Perspectives of Modeling Stomatal Conductance of Plants Under Drought Stress

CHEN Rui1, 2, JI Xibin1*, ZHAO Wenyue1, 2   

  1. (1. Linze Inland River Basin Research Station, State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
  • About author:CHEN Rui, Master student, research areas include ecohydrology and micrometeorology. E-mail: chenrui24@mails.ucas.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No.42271043); Gansu Planning Projects on Science and Technology–Outstanding Ph. D. Student Program (Grant No.24JRRA109).
干旱胁迫会通过土壤和大气两条路径影响植物气孔行为,气孔导度作为植物适应干旱胁迫的重要生理指标,受环境因素及植物内部机制双重调控。基于对国内外研究的分析,梳理了干旱胁迫情境下气孔导度模型的发展与应用,包括Jarvis 类经验模型、Ball-Berry 类半经验模型,以及基于水力学理论和气孔优化理论的两类机理模型,深入剖析了其各自的优势与不足。总的来说,经验与半经验模型缺乏生物物理机制,机理模型虽复杂,但能阐明干旱胁迫下气孔行为的内在规律,仍是未来研究的核心方向。此外,机器学习与稳定同位素等新兴技术的发展也为模型改进提供了新途径,这些模型不仅拓宽了模型的理论边界,也在一定程度上提高了对干旱胁迫下植物气孔导度的模拟能力。最后提出了未来研究的发展方向与建议,明确了研究需深化机理认知,并融合先进技术发展高精度、强机理气孔导度模型,为深入认识干旱胁迫下优化植物光合和蒸腾过程及气孔调节提供了更为坚实的理论支持和方法借鉴。
Abstract:Drought stress affects plant stomatal behavior through the dual pathways of soil and atmosphere. An essential physiological parameter for plants' adaptation to drought stress is stomatal conductance, which is regulated by both internal plant mechanisms and external environmental factors. Based on the analysis of domestic and international studies, the development and application of stomatal conductance models under drought stress scenarios are reviewed, including Jarvis-type empirical models, Ball-Berry-type semi-empirical models, and two types of mechanistic models based on stomatal hydraulics theory and optimization theory, with in-depth analyses of their respective strengths and shortcomings. Despite being straightforward and practical, the empirical and semi-empirical models of stomatal conductance nevertheless have a weak theoretical foundation and are unable to adequately explain biophysical mechanisms. Mechanistic models, on the other hand, have greater biophysical explanatory power and adaptability and, despite their complexity, can clarify the inherent patterns of stomatal behaviors under drought stress. This makes them a universal prediction framework for simulating stomatal conductance in plants under intricate drought scenarios. Even if there are numerous obstacles in the way of creating mechanistic models of stomatal conductance, more research in this area is still crucial. In addition, the development of emerging technologies such as machine learning and stable isotopes has also provided new avenues for model improvement, and these models have not only broadened the theoretical boundaries of the models, but also improved the simulation ability of stomatal conductance in plants under drought stress to a certain extent.We concluded by outlining our prognosis and recommendations for future research directions, emphasizing the necessity to incorporate cutting-edge technology and expand mechanistic knowledge in order to create robust and high-precision mechanistic stomatal conductance models. This will offer a stronger theoretical foundation and methodological point of reference for a more thorough comprehension of how to optimize transpiration, photosynthesis, and stomatal regulation in drought-stressed plants.

中图分类号: 

[1] 刘娇娇, 刘军志, 宋超, 张蔚珍, 刘勇勤. 河流碳循环模型研究进展[J]. 地球科学进展, 2024, 39(2): 111-123.
[2] 金佳鑫, 张凤焰, 王焓, 刘颖, 侯炜烨, 蔡裕龙, 潘晓龙, 王颖, 朱求安, 方秀琴, 颜亦琪, 任立良. 常绿林“导度—光合”模型斜率参数优化与蒸腾估算改进[J]. 地球科学进展, 2023, 38(9): 931-942.
[3] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
[4] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
阅读次数
全文


摘要