地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.029

   

煤系烃源岩中高丰度三环萜烷的组成特征 及其成因探讨∗
夏柳青1,2,张敏1,2*,吴喻祥1,2   
  1. (1. 长江大学资源与环境学院 油气地球化学与环境湖北省重点实验室,湖北 武汉 430100; 2. 长江大学 油气资源与勘探技术教育部重点实验室,湖北 武汉 430100)
  • 基金资助:
    国家自然科学基金项目(编号:42072165)资助.

Discussion on Composition Characteristics and Genesis of High Abundance Tricyclic Terpanes in Coal-Measure Source Rocks

XIA Liuqing1, 2, ZHANG Min1, 2*, WU Yuxiang1, 2   

  1. (1. Hubei Key Laboratory of Petroleum Geochemistry and Environment, School of Resources and Environment, Yangtze University, Wuhan 430100, China; 2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China)
  • About author:XIA Liuqing, research areas include organic geochemistry. E-mail: 2901545609@qq.com
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No.42072165).
三环萜烷系列化合物的相对丰度对揭示有机质来源、沉积环境和热演化程度等具有重要 意义。常规煤系烃源岩三环萜烷含量通常偏低,然而在鄂尔多斯和塔里木盆地煤系烃源岩中却检 测到了异常高丰度的三环萜烷(相对于藿烷),因此深入探讨其分布模式、组成特征及成因机制具 有重要意义。采用常规地球化学分析方法和色谱—质谱技术,对研究区的30 个煤系烃源岩样品的 分子地球化学特征进行了详细剖析。研究表明,煤系烃源岩中三环萜烷呈现2 种不同丰度模式:低 丰度三环萜烷(ΣTT/C30H<2)和高丰度三环萜烷(ΣTT/C30H>2)。低丰度三环萜烷样品表现为 C19-21TT 下降型分布模式,形成于淡水偏氧化环境,生烃母质以高等植物为主,热演化程度为低成 熟;高丰度三环萜烷样品则以C23TT 或C21TT 为主峰,形成于咸化、富硫的沉积环境,生烃母质主要 为细菌及低等水生生物,热演化程度达到成熟—高熟阶段。通过成熟度、沉积环境及母质输入相 关参数与ΣTT/C30H值的相关性分析发现,表征沉积环境和生烃母质的参数与ΣTT/C30H值的相关 性更为显著。研究结果表明,偏咸化、高硫含量的成煤环境及生烃母质中高等植物经微生物改造 生成的次生产物输入的增加是煤系烃源岩抽提物中高丰度三环萜烷形成的主要控制因素,而成熟 度则为次要影响因素。煤系烃源岩中高丰度三环萜烷的组成特征及成因机制研究,为煤系油气勘 探与评价提供了重要的指示意义。
Abstract:The relative abundance of tricyclic terpanes has significant indicative value for revealing organic matter sources, depositional environments, and thermal evolution stages. While traditional coal-measure source rocks typically exhibit low tricyclic terpanes content, anomalously high abundances of tricyclic terpanes (relative to hopanes) have been detected in coal-measure source rocks from the Ordos and Tarim Basins. Therefore, an indepth investigation of their distribution patterns, compositional characteristics, and formation mechanisms is of substantial significance. This study employed conventional geochemical analysis methods and gas chromatography-mass spectrometry (GC-MS) to systematically analyze molecular geochemical characteristics of 30 coal-measure source rock samples from the study area. The research demonstrates that tricyclic terpanes in coal-measure source rocks present two distinct abundance patterns: low abundance tricyclic terpanes (ΣTT/C30H <2) and high abundance tricyclic terpanes (ΣTT/C30H>2). The low abundance tricyclic terpane samples exhibit a C19-21TT decreasing distribution pattern, formed in freshwater oxidizing environments, with hydrocarbongenerating parent material primarily derived from higher plants, and at low thermal maturity. The high abundance tricyclic terpane samples display distribution patterns with C23TT or C21TT as the dominant peak, formed in saline, sulfur-rich depositional environments, with hydrocarbon-generating parent material mainly sourced from bacteria and lower aquatic organisms, reaching mature to highly mature thermal evolution stages. Correlation analysis between maturity, depositional environment, and parent material input parameters with Σ TT/C30H values reveals that parameters characterizing depositional environment and hydrocarbon-generating parent material show more significant correlation with tricyclic terpane abundance. The results indicate that brackish, high-sulfur coal-forming environments and increased input of secondary products generated by microbial transformation of higher plants in hydrocarbon-generating parent material are the primary controlling factors for high abundance tricyclic terpanes in coal-measure source rock extracts, while thermal maturity serves as a secondary influencing factor. The molecular composition and formation mechanisms of high-abundance tricyclic terpanes in coal-measure source rocks offer critical molecular geochemical evidence for recognizing coal-forming environments, identifying hydrocarbon-generating organic matter, and assessing thermal maturity, thereby providing theoretical and practical guidance for coal-measure hydrocarbon exploration.

中图分类号: 

[1] 杨丽华, 刘池洋, 代双和, 周义军, 毕明波, 刘永涛. 鄂尔多斯盆地古峰庄地区断裂特征及油气地质意义[J]. 地球科学进展, 2021, 36(10): 1039-1051.
[2] 薛春玲, 戴霜, 陈中阳, 汪卫国. 亚洲奥陶系牙形刺生物地层研究进展[J]. 地球科学进展, 2021, 36(1): 29-44.
[3] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[4] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[5] 张创, 罗然昊, 张恒昌, 周雪, 王成龙, 邢华, 钱成. 中等地温场、长深埋期石英砂岩类储层成岩作用与孔隙度演化模式——以鄂尔多斯盆地延安地区下石盒子组为例[J]. 地球科学进展, 2017, 32(7): 744-756.
[6] 李向东, 阙易, 郇雅棋. 桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J]. 地球科学进展, 2017, 32(3): 276-291.
[7] 郑庆华, 柳益群. 鄂尔多斯盆地华庆地区延长组长4+5致密油层成岩作用及成岩相[J]. 地球科学进展, 2015, 30(1): 78-90.
[8] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[9] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[10] 林春明, 张霞, 周健, 徐深谋, 俞昊, 陈召佑. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J]. 地球科学进展, 2011, 26(2): 212-223.
[11] 彭旭阳,张枝焕,何奉朋,高丹丹,卢松. 北京地区典型土壤剖面分子标志物分布特征[J]. 地球科学进展, 2008, 23(6): 580-589.
阅读次数
全文


摘要