地球科学进展 ›› 2024, Vol. 39 ›› Issue (1): 96 -107. doi: 10.11867/j.issn.1001-8166.2024.007

事件沉积与灾害历史 上一篇    下一篇

事件层组合特征限定软沉积变形的地震成因——在青岛灵山岛的应用
张济东 1 , 3( ), 梁超 1 , 2, 操应长 1 , 2, 陈奥 1, 卢银 3( )   
  1. 1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
    2.中国石油大学(华东) 深层油气 全国重点实验室,山东 青岛 266580
    3.同济大学 海洋地质国家重点实验室,上海 200092
  • 收稿日期:2023-10-30 修回日期:2023-12-18 出版日期:2024-01-10
  • 通讯作者: 卢银 E-mail:1801020308@s.upc.edu.cn;yinlu@tongji.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金(22120230285);国家自然科学基金面上项目(42272119);泰山学者工程(TSQN201812030)

Feature of Event Bed Combinations Constrains the Seismic Origin for Soft-sediment Deformation as Applied to the Lingshan Island, Qingdao, East China

Jidong ZHANG 1 , 3( ), Chao LIANG 1 , 2, Yingchang CAO 1 , 2, Ao CHEN 1, Yin LU 3( )   

  1. 1.School of Geosciences, China University of Petroleum (East China), Qingdao Shandong 266580, China
    2.National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao Shandong 266580, China
    3.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2023-10-30 Revised:2023-12-18 Online:2024-01-10 Published:2024-01-26
  • Contact: Yin LU E-mail:1801020308@s.upc.edu.cn;yinlu@tongji.edu.cn
  • About author:ZHANG Jidong, Master student, research area includes event sedimentology. E-mail: 1801020308@s.upc.edu.cn
  • Supported by:
    the Fundamental Research Funds for the Central Universities(22120230285);The National Natural Science Foundation of China(42272119);Taishan Scholars Program, China(TSQN201812030)

对软沉积物变形构造的形成过程解析和触发因素识别一直是国内外事件沉积学研究的重点和难点。国内外学者常将地层中保存的软沉积物变形构造的形成归因于地震作用,但缺乏足够的证据来支撑地震震动触发相应的沉积过程与变形机制。由于软沉积物变形构造可以由地震、风暴和非地震参与的液化作用、重力作用及滑坡等因素触发,且可能受瑞利—泰勒不稳定性(因密度差异沿垂向变形)或开尔文—亥姆获兹不稳定性(沿水平方向变形)机制的控制,软沉积物变形构造本身并不能作为特定触发因素的判别标志。此前,通过解析事件层组合特征来揭示与软沉积物变形构造形成相关的沉积过程和变形机制,进而限定变形构造触发因素的方法已成功应用于中东地区死海盆地(死海断裂带)的事件沉积研究中。尝试应用此方法来解析灵山岛灯塔剖面底部软沉积物变形构造的变形机制与触发因素,研究发现灯塔剖面底部的软沉积物变形构造是原位形成与保存的,并被浊流沉积层上覆,且二者之间无背景沉积物。这种独特的事件层组合指示原位变形和异地搬运两种水下沉积过程准同期发生,而能够同时激发这两类物质来源与沉积过程迥异的事件沉积响应的最可能因素是区域强震震动。结合灵山岛研究案例认为,前人所做的模式化的事件沉积成因判别标志不宜直接套用,而控制事件沉积的沉积过程与物理机制具有一定的普适性,应该是事件沉积学研究的关键。

Identification of trigger(s) and understanding of formation mechanism(s) and process(es) are the primary focus of event sedimentology studies. The triggering of soft-sediment deformation is usually attributed to earthquake shaking, despite the lack of solid evidence to support seismic-forced deformation mechanisms and sedimentary processes, e.g., previous study cases from the Dengta outcrop, Linshan Island, Qingdao, and East China. However, soft-sediment deformation can be triggered by either earthquakes, storms, non-earthquake events involving liquefaction, gravitational loading, or slumping. In addition, the deformation can be controlled by either the Rayleigh-Taylor instability or the Kelvin-Helmholtz instability. Therefore, features of the deformation structure alone cannot be used as indicators for trigger identification. A new approach for trigger identification that involves analyzing the combined features of two event layers has been successfully applied in the Dead Sea Basin (Dead Sea Fault) in the Middle East. In this study, we apply this novel approach to analyze the deformation mechanism and trigger of a large-scale soft-deformed layer in the Dengta outcrop, Lingshan Island, Qingdao. We observe that large-scale soft-sediment deformation is in situ formed and preserved; a turbidite layer overlies the in situ deformed layer; and no background sediments have accumulated between the two event layers. These features indicate that in situ and ex situ sedimentary responses occurred simultaneously. Strong regional seismic shaking is the most plausible trigger for the contemporaneous occurrence of in situ and ex situ sedimentary responses when considering regional geological settings.

中图分类号: 

图1 灵山岛大地构造背景及地层序列
(a)山东东部地质图(据参考文献[ 39 - 41 ]修改);(b)灵山岛地质简图(据参考文献[ 37 ]修改);(c)灵山岛莱阳群地层序列简图(据参考文献[ 35 ]修改)
Fig. 1 Tectonic setting and stratigraphic sequence of Lingshan Island
(a) Geological map of eastern Shandong (modified after references [39-41]); (b) Geological map of Lingshan Island (modified after reference [ 37 ]); (c) Stratigraphic sequence of the Laiyang Group on Lingshan Island (modified after reference [ 35 ])
图2 灵山岛灯塔剖面地层序列(a)及其保存的软沉积物变形构造层(b
(a)据参考文献[ 45 ]修改;(b)中的(b1)~(b4)对应(a)底部的软沉积物变形构造层(b1)~(b4)部分
Fig. 2 Dengta outcropLingshan Islandaand preserved soft-sediment deformation structuresb
Modified after reference [ 45 ]; The (b1)~(b4) in Fig. (b) correspond to the (b1)~(b4) parts of the soft-sediment deformation at the bottom of Fig. (a)
图3 灵山岛灯塔剖面保存的典型背景沉积(纹层)
(a)~(e)纹层露头;(f)纹层的镜下特征(单偏光)
Fig. 3 Typical background depositslaminaepreserved in the Dengta outcropLingshan Island
(a)~(e) Photographs showing the laminae; (f) Microscopic characteristics of the laminae (single polarized light)
图4 灵山岛灯塔剖面保存的典型浊流沉积
Fig. 4 Typical turbidites preserved in the Dengta outcropLingshan Island
图5 灵山岛灯塔剖面软沉积物变形构造的特征
(a)和(b)水平方向变形及其转折端;(c)和(d)倾斜方向变形及其转折端;(e)和(f)倾斜方向变形及其内部的相互干涉的涡旋状变形构造;(g)和(h)垂直方向变形及其转折端
Fig. 5 Features of soft-sediment deformations in the Dengta outcropLingshan Island
(a) and (b) Horizontal deformation and its hinge zone; (c) and (d) Inclined deformation and its hinge zone; (e) and (f) Inclined deformation and its internal coherent vortical deformation; (g) and (h) Vertical deformation and its hinge zone
图6 灵山岛灯塔剖面事件层组合特征
(a)~(d)软沉积变形层与上覆浊积岩层的接触关系;(e)~(h)高清照片揭示软沉积变形层与上覆浊积岩层间无背景沉积物
Fig. 6 Feature of event bed combinations in the Dengta outcropLingshan Island
(a)~(d) The transitions between the soft-sediment deformation and the overlying turbidite; (e)~(h) High-resolution photos reveal no background deposits between the soft-sediment deformation and the overlying turbidite
图7 灵山岛灯塔剖面软沉积物变形构造的显著特征
(a)~(f)高清照片揭示灵山岛灯塔剖面软沉积变形构造中的纹层强烈变形但未破碎
Fig. 7 Significant characteristics of the soft-sediment deformation structures in the Dengta outcropLingshan Island
(a)~(f) High-resolution photos reveal well-preserved strongly deformed laminae in the soft-sediment deformation structures of the Dengta outcrop, Lingshan Island
图8 灵山岛事件层组合特征与全球已知典型事件层组合特征的对比
(a)~(c)灵山岛灯塔剖面浊流沉积层与原位软沉积变形层的组合特征;(d)和(e)中东地区死海断裂带的浊流沉积层与原位软沉积变形层的组合特征(据参考文献[ 29 ]修改)
Fig. 8 Comparison of event bed combination features between Lingshan Island and global known typical cases
(a)~(c) Combination features of turbidite and in situ soft-sediment deformation in the Dengta outcrop, Lingshan Island; (d) and (e) Combination features of turbidite and in situ soft-sediment deformation in the Dead Sea Fault, Middle East (modified after reference [ 29 ])
1 OWEN G, MORETTI M, ALFARO P. Recognising triggers for soft-sediment deformation: current understanding and future directions[J]. Sedimentary Geology, 2011, 235(3/4): 133-140.
2 DU Yuansheng. Discussion about studies of earthquake event deposit in China[J]. Journal of Palaeogeography,2011,13(6):581-586.
杜远生. 中国地震事件沉积研究的若干问题探讨[J]. 古地理学报,2011, 13(6): 581-586.
3 ARNAUD E. The paleoclimatic significance of deformation structures in Neoproterozoic successions[J]. Sedimentary Geology, 2012, 243: 33-56.
4 LI Yong, ZHONG Jianhua, SHAO Zhufu, et al. An overview on the classification and genesis of soft-sediment deformation structure[J]. Geological Review, 2012, 58(5): 829-838.
李勇,钟建华,邵珠福,等. 软沉积变形构造的分类和形成机制研究[J]. 地质论评,2012, 58(5): 829-838.
5 TOPAL S, OZKUL M. Soft-sediment deformation structures interpreted as seismites in the Kolankaya Formation, Denizli Basin (SW Turkey)[J]. Scientific World Journal,2014. DOI:10.1155/2014/352654.
6 CHEN Jitao. Research progress of soft-sediment deformation structures[J]. Journal of Stratigraphy, 2020, 44(1):64-75.
陈吉涛 .软沉积物变形构造研究进展[J]. 地层学杂志,2020, 44(1): 64-75.
7 LIANG Zhao, YUN Yupan, WEI Hao. Soft-sediment deformation structures induced by rapid sedimentation in Lower Cretaceous turbidites, Lingshan Island[J]. Acta Sedimentologica Sinica, 2023, 41(2): 450-458.
梁钊,云玉攀,魏浩. 快速沉积引发的软沉积物变形构造特征——以灵山岛下白垩统浊积岩为例[J]. 沉积学报,2023, 41(2): 450-458.
8 MONTENAT C, BARRIER P, D’ESTEVU P O, et al. Seismites: an attempt at critical analysis and classification[J]. Sedimentary Geology, 2007, 196(1/2/3/4): 5-30.
9 QIAO Xiufu, LI Haibing. Effect of earthquake and ancient earthquake on sediments[J]. Journal of Palaeogeography, 2009, 11(6): 593-610.
乔秀夫,李海兵 .沉积物的地震及古地震效应[J]. 古地理学报,2009, 11(6): 593-610.
10 MORETTI M, RONCHI A. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquen Basin (Northern Patagonia)[J]. Sedimentary Geology, 2011, 235(3/4): 200-209.
11 HE B, QIA X. Advances and overview of the study on paleo-earthquake events: a review of seismites[J]. Acta Geologica Sinica-English Edition, 2015, 89(5): 1 702-1 746.
12 MOLINA J M, ALFARO P, MORETTI M, et al. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain)[J]. Terra Nova, 1998, 10(3): 145-150.
13 ALFARO P, DELGADO J, ESTEVEZ A, et al. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain)[J]. International Journal of Earth Sciences, 2002, 91(3): 505-513.
14 CHEN J, CHOUGH S K, CHUN S S, et al. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft-sediment deformation induced by storm-wave loading[J]. Sedimentology,2009, 56(4): 1 174-1 195.
15 MATSUMOTO D, NARUSE H, FUJINO S, et al. Truncated flame structures within a deposit of the Indian Ocean Tsunami: evidence of syn-sedimentary deformation[J]. Sedimentology,2008, 55(6): 1 559-1 570.
16 MESHRAM D C, SANGODE S J, GUJAR A R, et al. Occurrence of soft sediment deformation at Dive Agar beach, west coast of India: possible record of the Indian Ocean tsunami (2004)[J]. Natural Hazards, 2011, 57(2): 385-393.
17 HARRIS C, MURTON J, DAVIES M C R. Soft-sediment deformation during thawing of ice-rich frozen soils: results of scaled centrifuge modelling experiments[J]. Sedimentology,2000, 47(3): 687-700.
18 WEAVER L, ARNAUD E. Polyphase glacigenic deformation in the Waterloo Moraine, Kitchener, Ontario, Canada[J]. Sedimentary Geology, 2011, 235(3/4): 292-303.
19 GRUSZKA B, van LOON A J. Genesis of a giant gravity-induced depression (gravifossum) in the Enkoping esker, S. Sweden[J]. Sedimentary Geology, 2011, 235(3/4): 304-313.
20 PISARSKA-JAMROZY M, WECKWERTH P. Soft-sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of subenvironments in delta deposits[J]. Sedimentology, 2013, 60(3): 637-665.
21 MORETTI M, SORIA J M, ALFARO P, et al. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain)[J]. Facies, 2001, 44: 283-294.
22 MORETTI M, SABATO L. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant’Arcangelo Basin (Southern Italy): seismic shock vs. overloading[J]. Sedimentary Geology, 2007, 196(1/2/3/4): 31-45.
23 LU Y, WETZLER N, WALDMANN N, et al. A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary[J]. Science Advances,2020,6(48). DOI:10.1126/sciadv.aba4170.
24 ZHOU Yaoqi, ZHANG Zhenkai, XU Hong, et al. Soft-sediment deformation structures in the sediments at Lingshan Island[J]. Marine Geology Frontiers, 2015, 31(4): 42-54.
周瑶琪,张振凯,许红,等 .灵山岛沉积物软变形构造特征[J].海洋地质前沿,2015, 31(4): 42-54.
25 ZHANG Fengxiao, ZHUO Yaoqi, WANG Andong, et al. Load structures and ball-and-pillow structures on the Lingshan Island, Shandong[J]. Sedimentary Geology and Tethyan Geology,2015,35(3):42-50.
张风霄,周瑶琪,王安东,等. 山东省灵山岛负载构造和球—枕构造研究[J].沉积与特提斯地质,2015, 35(3): 42-50.
26 GE Yuzhu, ZHONG Jianhua. Discussion about triggers of Early Cretaceous soft-sediment deformation structures on the Lingshan Island and the implications for palaeo-environment[J]. Geological Review,2017,63(4):927-940.
葛毓柱,钟建华. 灵山岛早白垩世软沉积物变形构造触发机制及其古环境意义探讨[J]. 地质论评,2017, 63(4): 927-940.
27 LIANG Zhao, ZHOU Yaoqi. Soft-sediment deformation structures related to slumping in Lower Cretaceous turbidite in Lingshan Island, Shandong Province[J]. Earth Science,2017,42(10): 1 715-1 724.
梁钊,周瑶琪. 山东省灵山岛下白垩统浊积岩中与滑塌作用相关的软沉积物变形构造[J]. 地球科学,2017, 42(10):1 715-1 724.
28 SUN Funing, YANG Renchao, FAN Aiping, et al. Classification and geological significance of soft-sediment deformation structures of Lower Cretaceous in Lingshan Island[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1 105-1 118.
孙福宁,杨仁超,樊爱萍,等. 灵山岛下白垩统软沉积物变形构造类型划分及其地质意义[J]. 沉积学报,2018, 36(6): 1 105-1 118.
29 LU Y, MOERNAUT J, BOOKMAN R, et al. A new approach to constrain the seismic origin for prehistoric turbidites as applied to the Dead Sea Basin[J]. Geophysical Research Letters,2021,48(3). DOI:10.1029/2020GL090947.
30 MOERNAUT J, VAN DAELE M, HEIRMAN K, et al. Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile[J]. Journal of Geophysical Research-Solid Earth,2014,119(3): 1 607-1 633.
31 WILHELM B, NOMADE J, CROUZET C, et al. Quantified sensitivity of small lake sediments to record historic earthquakes: implications for paleoseismology[J]. Journal of Geophysical Research-Earth Surface, 2016, 121(1): 2-16.
32 GOLDFINGER C, MOREY A E, NELSON C H, et al. Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas Fault based on turbidite stratigraphy[J]. Earth and Planetary Science Letters, 2007, 254(1/2): 9-27.
33 GOLDFINGER C, IKEDA Y, YEATS R S, et al. Superquakes and supercycles[J]. Seismological Research Letters, 2013, 84(1): 24-32.
34 HOWARTH J D, BARTH N C, FITZSIMONS S J, et al. Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry[J]. Nature Geoscience,2021,14(5):314-320.
35 CHENG Y, WU Z, LIU X, et al. Late Jurassic to early Cretaceous magnetostratigraphy of scientific drilling core LK-1 in the Lingshan Island of Riqingwei Basin, eastern China[J]. Science China-Earth Sciences, 2022, 65(4): 742-758.
36 LUAN Guangzhong, LI Anlong, WANG Jian, et al. The geological origin division of the main sea island in Qingdao area and environment analysis[J]. Periodical of Ocean University of China, 2010, 40(8): 111-116.
栾光忠,李安龙,王建,等. 青岛主要海岛成因分类及其地质环境分析[J]. 中国海洋大学学报(自然科学版),2010, 40(8): 111-116.
37 ZHOU T, ZHOU Y, SOAGER N, et al. Late Mesozoic rifting and its deep dynamic mechanisms in the central Sulu orogenic belt: records from Lingshan Island[J]. Science China-Earth Sciences, 2022, 65(9): 1 751-1 771.
38 ZHOU Yaoqi, ZHANG Zhenkai, LIANG Wendong, et al. Late Mesozoic tectono-magmatic activities and prototype basin restoration in Eastern Shandong Province, China[J]. Earth Science Frontiers,2015,22(1):137-156.
周瑶琪,张振凯,梁文栋,等. 山东东部晚中生代构造—岩浆活动及原型盆地恢复[J].地学前缘,2015, 22(1): 137-156.
39 YANG T, CAO Y, FRIIS H, et al. Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China[J]. Australian Journal of Earth Sciences, 2018, 65(4): 517-534.
40 ZHANG Z, ZHOU Y, ZHOU T, et al. Geochemistry of siltstones of the Early Cretaceous Laiyang Group in Taolin area, Shandong Province, Eastern China: implications for provenance, source weathering, palaeo-environment, and tectonic setting[J]. Geological Journal, 2018, 55(1): 133-146.
41 CHEN Y, ZHOU Y, ZHOU T, et al. Geochemical characteristics and evaluation criteria of overmature source rock of the Laiyang Formation in Well LK-1, Riqingwei Basin, Eastern China[J]. Energies,2023,16(8). DOI:10.3390/en16083482.
42 ZHOU Yaoqi, ZHANG Yue, ZHOU Tengfei, et al. The tectonic transition of the Late-Mesozoic Yellow Sea and adjacent region and its tectonic framework of the proto-basin[J]. Earth Science, 2023, 48(4): 1 461-1 480.
周瑶琪,张悦,周腾飞,等. 黄海及邻区晚中生代构造转换与原型盆地构造格局[J]. 地球科学,2023, 48(4): 1 461-1 480.
43 WANG J, CHANG S C, LU H B, et al. Detrital zircon U-Pb age constraints on Cretaceous sedimentary rocks of Lingshan Island and implications for tectonic evolution of Eastern Shandong, North China[J]. Journal of Asian Earth Sciences,2014,96:27-45.
44 YANG T, CAO Y, LIU K, et al. Depositional elements and evolution of gravity-flow deposits on Lingshan Island (Eastern China): an integrated outcrop-subsurface study[J]. Marine and Petroleum Geology,2022,138(1). DOI:10.1016/j.marpetgeo.2022.105566.
45 Hongbo LÜ, WANG Jun, ZHANG Haichun. Discovery of the Late Mesozoic slump beds in Lingshan Island, Shandong, and a pilot research on the regional tectonics[J]. Acta Geologica Sinica, 85(6): 938-946.
吕洪波,王俊,张海春. 山东灵山岛晚中生代滑塌沉积层的发现及区域构造意义初探[J]. 地质学报,2011, 85(6): 938-946.
46 YANG R, van LOON A J. Early Cretaceous slumps and turbidites with peculiar soft-sediment deformation structures on Lingshan Island (Qingdao, China) indicating a tensional tectonic regime[J]. Journal of Asian Earth Sciences,2016,129:206-219.
47 BULL S, CARTWRIGHT J, HUUSE M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine and Petroleum Geology,2009,26(7): 1 132-1 151.
48 LU Y, WALDMANN N, ALSOP G I, et al. Interpreting soft sediment deformation and mass transport deposits as seismites in the Dead Sea depocenter[J]. Journal of Geophysical Research-Solid Earth, 2017, 122(10): 8 305-8 325.
49 WETZLER N, MARCO S, HEIFETZ E. Quantitative analysis of seismogenic shear-induced turbulence in lake sediments[J].Geology, 2010, 38(4): 303-306.
50 LU Yin, WETZLER N, MARCO S, et al. Subaqueous event deposits response to regional neotectonics: case studies of the Dead Sea Basin and the Qaidam Basin[J]. Quaternary Sciences,2022,42(3):617-636.
卢银, WETZLER N, MARCO S,等. 区域新构造活动的水下事件沉积响应:以死海盆地和柴达木盆地为例[J]. 第四纪研究,2022, 42(3): 617-636.
51 DU Yuansheng, HAN Xin. Seismo-deposition and seismites[J].Advances in Earth Science,2000,15(4):389-394.
杜远生,韩欣. 论震积作用和震积岩[J]. 地球科学进展,2000,15(4):389-394.
[1] 冉伟民, 栾锡武, 魏新元, 鲁银涛, 刘鸿, 叶传红, 王嘉, 胡庆, 张丹丹. 加里曼丹岛南缘中中新世沉积特征及其主控因素探讨[J]. 地球科学进展, 2022, 37(3): 253-267.
[2] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[3] 戴朝成,郑荣才,朱如凯,翟文亮,高红灿. 四川类前陆盆地须家河组震积岩的发现及其研究意义[J]. 地球科学进展, 2009, 24(2): 172-180.
[4] 钟广法,李前裕,郝沪军,王嘹亮. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
[5] 刘少峰. 前陆盆地的形成机制和充填演化[J]. 地球科学进展, 1993, 8(4): 30-37.
[6] 李建明. 沉降速率作为独立变量的水流构造三维稳定域图[J]. 地球科学进展, 1990, 5(1): 28-31.
阅读次数
全文


摘要