地球科学进展 ›› 2009, Vol. 24 ›› Issue (4): 372 -382. doi: 10.11867/j.issn.1001-8166.2009.04.0372

综述与评述 上一篇    下一篇

涡动相关涡动相关仪观测蒸散量的插补方法比较
徐自为 1,刘绍民 1*,徐同仁 1,王介民 2   
  1. 1.北京师范大学遥感科学国家重点实验室,地理学与遥感科学学院,北京 100875;2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2008-12-29 修回日期:2009-03-04 出版日期:2009-04-10
  • 通讯作者: 刘绍民(1967-),男,浙江绍兴人,教授,主要从事陆面过程观测与遥感应用研究. E-mail:smliu@bnu.edu.cn
  • 基金资助:

    公益性行业(气象)科研专项“大尺度水热通量观测系统的研制与应用研究”(编号:GYHY200706046);中国高技术研究发展计划项目“非均匀下垫面条件下区域蒸散量遥感监测与验证的关键技术研究”(编号:2007AA12Z175);国家自然科学基金项目“非均匀下垫面上卫星像元尺度地表通量的研究”(编号:40671128)资助.

Comparison of the Gap Filling Methods of Evapotranspiration Measured by Eddy Covariance System

Xu Ziwei 1, Liu Shaomin 1, Xu Tongren 1, Wang Jiemin 2   

  1. 1.State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University,Beijing 100875, China;
    2.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2008-12-29 Revised:2009-03-04 Online:2009-04-10 Published:2009-04-10

     涡动相关仪在长时间连续观测中,观测数据会有不同程度的缺失。应用6种不同的插补方法(平均昼夜变化法MDV,非线性回归方法NLR,动态线性回归方法DLR,查表法LUT,FAO-PM方法,HANTS方法)对北京密云站2007年涡动相关仪观测蒸散量数据进行了插补。结果表明: LUT方法在不同数据缺失时均得到较好结果(均方差小于8 W/m2);MDV和NLR方法更适合于短时间数据缺失的插补; DLR和FAO-PM方法在观测数据出现连续波动时插补结果较差。由LUT、DLR、NLR、HANTS、FAO-PM方法得到的年蒸散量分别为395.8 mm、409.9 mm、393.5 mm、390.7 mm、399.4 mm,差异在2.3~19.2 mm之间变化。对比分析了LUT方法得到的年蒸散量(潜热通量)与净辐射、降水量以及LAS观测潜热通量间的变化规律,表明插补结果合理。

      Data missing is inevitable in long-term eddy covariance system measurement. Several gap filling methods are chosen and applied in the data sets of Miyun station in 2007. These methods include mean diurnal variation (MDV), look-up tables (LUT), nonlinear regressions (NLR), Dynamic linear regression (DLR), Harmonic analysis of time series (HANTS) as well as the method of Penman-Monteith recommend by Food and Agricultural Organization (FAO-PM). The impacts of different gap filling methods on the evapotranspiration are investigated and the results are tested. The result shows: LUT method is stable in every data missing cases (RMSD less than 8 W/m2); MDV and NLR methods are more suitable for short data missing; The gap filling results of DLR and FAO-PM methods are not good if the observed data have large change continuously. The Annual ET obtained by LUT, DLR, NLR, HANTS, FAO-PM methods are 395.8mm, 409.9mm, 393.5mm,390.7mm,399.4mm. The difference between annual ET filled by different methods resulted in a range of 2.3~19.2mm per year. The annual ET obtained by LUT method is compared to net radiation, precipitation and latent heat flux measured by LAS; it is shows that the results are reasonable.

中图分类号: 

[1] Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of European forests: The EUROFLUX methodology[J].Advances in Ecological Research, 2000,30:113-175.
[2] Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future[J].Global Change Biology, 2003,9:479-492.
[3] Falge E, Baldocchi D D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J].Agricultural and Forest Meteorology, 2001,107:43-69.
[4] Alavi N, Warland J S, Berg A A. Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach[J].Agricultural and Forest Meteorology, 2006, 141:57-66.
[5] Falge E, Baldocchi D D, Olson R, et al. Gap filling strategies for long term energy flux data sets[J]. Agricultural and Forest Meteorology, 2001, 107: 71-77.
[6] Moffat A M, Papale D, Reichstein M, et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes[J].Agricultural and Forest Meteorology,2007, 147:209-232.
[7] Berbigier P, Bonnefond J, Mellmann P. CO2 and water vapour fluxes for 2 years above Euroflux forest site[J]. Agricultural and Forest Meteorology, 2001, 108:183-197.
[8] Schmidt A, Wrzesinsky T, Klemm O. Gap filling and quality assessment of CO2 and water vapour fluxes above an urban area with radial basis function neural networks[J].Boundary-Layer Meteorology, 2008, 126:389-413.
[9] Verhoef W. Application of Harmonic Analysis of NDVI Time Series (HANTS)[C]//Azzali, Menenti, eds. Fourier Analysis of Temporal NDVI in the Southern African and American continents. Wageningen; Report of DLO Winand Staring Centre, The Netherlands, 1996.
[10] Allen R G,Pereira L A, Raes D, et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements[M]. FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy, 1998.
[11] Andrés Vina, Scott Bearer, Hemin Zhang, et al. Evaluating MODIS data for mapping wildlife habitat distribution[J].Remote sensing of Environment, 2008, 112: 2 160-2 169. 
[12] Waters R, Allen R G, Bastiaanssen W. Surface energy balance algorithms for land. Advanced Training and Users Manual, Version1.0[Z],2002.
[13] Xu Ziwei, Liu Shaomin, Gong Lijuan, et al. A study on the data processing and quality assessment of the eddy covariance system[J].Advances in Earth Science, 2008, 23(4): 357-370.[徐自为,刘绍民,宫丽娟,等.涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展,2008,23(4): 357-370.]
[14] Baldocchi D D, Falge E, Wilson K. A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales[J].Agricultural and Forest Meteorology,2001,107:1-27.
[15] Sumner D M, Jacobs J M. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration[J]. Journal of Hydrology,2005,308:81-104.
[16] Geir E. The ensemble kalman filter: Theoretical formulation and practical implementation[J].Ocean Dynamics, 2003, 53:343-367.
[17] Xi Ge, Liu Shaomin, Jia Li. Estimation of regional evapotranspiration and ecological water requirement of vegetation by remote sensing in the yellow river delta wetland[J].Acta Ecologica Sinica,2008, 28(11):5 356-5 369.[奚歌,刘绍民,贾立.黄河三角洲湿地蒸散量与典型植被生态需水量的遥感研究[J]. 生态学报,2008, 28(11): 5 356-5 369.]
[18] Wang Dan, Jiang Xiaoguang, Tang Lingli, et al. The application of time-series fourier analysis to reconstructing cloud-free NDVI images[J].Remote Sensing for Land & Resources, 2005, 64(2):29-32.[王丹,姜小光,唐伶俐,等.利用时间序列傅立叶分析重构无云NDVI图像[J]. 国土资源遥感, 2005, 64(2):29-32.]
[19] Wilson K B, Goldstein A H, Falge E, et al. Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology, 2002, 113: 223-243.
[20] Yang Kun,Wang Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J].Science in China (Series D), 2008, 51(5):721-729.
[21] Twine T E, Kustas W P, Norman J M,et al. Correcting eddy-covariance flux underestimates over a grassland[J].Agricultural and Forest Meteorology, 2000, 103: 279-300.
[22] Li Shenggong, Asanuma J, Kotani A, et al. Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints[J]. Journal of Hydrology, 2007, 333:133-143.

[1] 朱明佳, 赵谦益, 刘绍民, 徐同仁. 农田下垫面观测通量的变化特征及其气候学足迹分析[J]. 地球科学进展, 2013, 28(12): 1313-1325.
[2] 张强,张之贤,问晓梅,王胜. 陆面蒸散量观测方法比较分析及其影响因素研究[J]. 地球科学进展, 2011, 26(5): 538-547.
[3] 王维真,徐自为,李新,王介民,张智慧. 大孔径闪烁仪在黑河流域的应用分析研究[J]. 地球科学进展, 2010, 25(11): 1208-1216.
[4] 艾力·买买提明,何清,霍文,刘新春. 塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J]. 地球科学进展, 2010, 25(11): 1228-1236.
[5] 李远, 孙睿, 刘绍民, 徐自为, 白洁. 大孔径闪烁仪观测数据在陆面模式验证中的应用初探[J]. 地球科学进展, 2010, 25(11): 1237-1247.
[6] 贾贞贞,刘绍民,毛德发,王志良,徐自为,张茹. 基于地面观测的遥感监测蒸散量验证方法研究[J]. 地球科学进展, 2010, 25(11): 1248-1260.
[7] 卢俐,刘绍民,徐自为,白洁,王介民. 大孔径闪烁仪和涡动相关仪观测显热通量之间的尺度关系[J]. 地球科学进展, 2010, 25(11): 1273-1282.
[8] 双喜,刘绍民,徐自为,王维真. 黑河流域观测通量的空间代表性研究[J]. 地球科学进展, 2009, 24(7): 724-733.
[9] 徐自为,刘绍民,宫丽娟,王介民,李小文. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.
[10] 李 林,张国胜,汪青春,时兴合. 黄河上游流域蒸散量及其影响因子研究[J]. 地球科学进展, 2000, 15(3): 256-259.
阅读次数
全文


摘要