地球科学进展 ›› 2009, Vol. 24 ›› Issue (3): 297 -307. doi: 10.11867/j.issn.1001-8166.2009.03.0297

“平流层过程及其对东亚天气气候的作用”专辑 上一篇    下一篇

平流层爆发性增温中平流层环流及化学成分变化过程研究
刘毅 1,刘传熙 1,2,陆春晖 1,2   
  1. 1. 中国科学院大气物理研究所中层大气与全球环境探测重点实验室,北京100029;2. 中国科学院研究生院,北京 100049
  • 收稿日期:2009-01-18 修回日期:2009-02-20 出版日期:2009-03-10
  • 通讯作者: 刘毅 E-mail:liuyi@mail.iap.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“平流层结构变化对平流层和对流层气候与环境的影响研究”(编号 :40633015);国家自然科学基金项目“北半球平流层爆发性增温及极涡活动对亚洲对流层阻塞影响的研究”(编号 :40805021)资助.

Impacts of the Stratospheric Sudden Warming on the Stratospheric Circulation and Chemical Tracers

Liu Yi 1,Liu Chuanxi 1,2,Lu Chunhui 1,2   

  1. 1. Key Laboratory of the Middle Atmosphere and Global Environmental Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
    2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2009-01-18 Revised:2009-02-20 Online:2009-03-10 Published:2009-03-10

      利用欧洲中期天气预报中心(ECMWF)气象分析场、欧洲空间局ENVISAT/MIPAS卫星观测资料以及平/对流层大气化学输送模式MOZART-3综合分析了2003—2004年冬季北半球爆发性增温事件对于平流层大气环流、物质输送以及对流层顶附近臭氧通量等多方面的影响。结果表明:①本次增温过程持续时间长、强度大,平流层极涡从高层向下逐层分裂,增温效应作用到大气较低层,当纬向东风形成并维持后极涡又自上向下逐层恢复;②SSW过程前后行星波活动频繁,有长时间多次的上传,且以1波作用为主,2波对其进行补充;③在θ-PVLAT坐标中分析发现SSW扰动过程中平流层中存在一对向极、向下的传播模态,相应的对流层中有一向赤道的传播模态,不同符号的纬向风、温度异常信号沿这两个模态传播,且上、下层传播模态在时间上存在着一定的联系;④增温过程中行星波活动引起的向极输送以及极区垂直运动的变化,共同影响了平流层的物质输送过程,从而导致北半球平流层N2O、O3、CH4、H2O等微量气体成分的垂直、水平分布发生显著变化;⑤增温过程中活跃的行星波可以造成平流层Brewer-Dobson环流增强,同时导致高纬度地区(60~90°N)穿越对流层顶的臭氧通量(Cross-Tropopause Ozone Flux, CTOF)显著增强,与行星波相联系的等熵物质运动引起“middleworld”区域内向赤道的臭氧通量也有所增强。

     In this paper, we analyze the impacts of the stratospheric sudden warming during 2003-2004 winter, on the stratospheric circulation, transportation and ozone flux comprehensively by using the ECWMF data, MIPAS satellite observations and MOZART3 model. In conclusion, we find out that: (1) This SSW event is a long and intense process, and causes the stratospheric polar vortex break up from up to low levels. During the establishment of easterlies on 10 hPa altitude, the upper polar vortex recovers promptly. (2) The planetary wave is so active that it transports from troposphere to stratosphere several times and the wave 1 played a major role. (3) The analysis from the θ-PVLAT coordinate reveals that there is a pair of poleward and downward propagating modes in stratosphere and an equatorward propagating mode in troposphere. Along with these two modes, zonal wind and temperature anomalies transport as two opposite signals. (4) The stratospheric transport is prominently changed by the enhanced poleward transport and the associated variations of the vertical motions during the planetary wave activities. Consequently, the spatial distributions of stratospheric tracers (N2O、O3、CH4、H2O) are greatly impacted by the warming event. (5) The enhanced wave activities during the warming event have enhanced the Brewer-Dobson circulation in the stratosphere and the cross-tropopause ozone flux in high latitudes. Moreover, the isentropic transport associated with the wave enhancement has also increased the meridional ozone flux outside the extratropical “middleworld” region.

中图分类号: 

[1] Matsuno T. A dynamical model of the stratospheric sudden warming[J].Journal of Atmospheric Sciences,1971, 28(8): 1 479-1 494.
[2] Labitzke K. On the different behavior of the zonal harmonic height waves 1 and 2 during the winters 1970/71 and 1971/72[J].Monthly Weather Review, 1978, 106:1 704-1 713.
[3] Tao X. Wavemean interaction and stratospheric sudden warming in an isentropic model[J].Journal of Atmospheric Sciences, 1994, 51(1): 134-153.
[4] Taguchi M. Tropospheric response to stratospheric sudden warmings in a simple global circulation models[J].Journal of Climate, 2003, 16: 3 039-3 050.
[5] Deng Shumei, Chen Yuejuan. Planetary wave activity during stratospheric sudden warming[J].Chinese Journal of Atmospheric Sciences, 2006, 30(6):1 236-1 248.[邓淑梅,陈月娟.平流层爆发性增温期间行星波的活动[J]. 大气科学, 2006, 30(6): 1 236-1 248.][6] Eliassen A, Palm E. On the transfer of energy in Stationary Mountain waves[J].Geophysics Publikasjoner,1961, 22: 1-23.
[7] Palmer T. Aspects of stratospheric sudden warming studied from a transformed Eulerian-mean viewpoint[J].Journal of Geophysical Research, 1981, 86: 9 679-9 687.
[8] Lu Chunhui, Liu Yi, Chen Yuejuan, et al. A dynamical diagnosis of stratospheric sudden warming in 2003-2004 Winter[J].Chinese Journal of Atmospheric Sciences, 2009, in press.[陆春晖,刘毅,陈月娟,等.2003—2004年冬季平流层爆发性增温的动力诊断分析[J]. 大气科学,2009(已接收).]
[9] Andrews D G, McIntyre M E. Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres[J].Journal of Atmospheric Science,1978, 35(2): 175-185.
[10] Cortesi U, Lambert J C, De C, et al. Geophysical validation of MIPAS-ENVISAT operational ozone data[J].Atmospheric Chemistry and Physics, 2007, 7:4 807-4 867.
[11] Kinnison D E, Brasseur G P, Walters S, et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model[J].Journal of Geophysical Research, 2007, 112: D20302, doi:10.1029/2006JD007879.
[12] Horowitz L W, Walters S, Mauzerall D L, et al. A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2[J].Journal of Geophysical Research, 2003, 108D(24): 4784, doi:10.1029/2002JD002853.
[13] Park M, Randel W J, Kinnison D E,et al. Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations[J].Journal of Geophysical Research, 2004, 109: D03302, doi:10.1029/2003JD003706.
[14] Gettelman A, Kinnison D E, Dunkerton T J,et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere[J].Journal of Geophysical Research, 2004, 109: D22101, doi:10.1029/2004JD004878.
[15] Holton J R, Haynes P, Mclntyre M, et al. Stratosphere-troposphere exchange[J]. Reviews of Geophysics, 1995, 33(4): 403-439.
[16] Kodera K, Kuroda Y. Tropospheric and stratospheric aspects of the Arctic Oscillation[J].Geophysical Research Letters, 2000, 27(20): 3 349-3 352.
[17] Kodera K, Kuroda Y. Stratospheric sudden warmings and slowly propagating zonal-mean zonal wind anomalies[J].Journal of Geophysical Research,2000, 105(D10): 12 351-12 359.
[18] Kodera K, Kuroda Y. A mechanistic model study of slowly propagating coupled stratosphere troposphere variability[J].Journal of Geophysical Research,2000, 105(D10): 12 361-12 370.
[19] Kuroda Y, Kodera K. Role of planetary waves in the Stratosphere-Troposphere coupled variability in the Northern Hemisphere winter[J].Geophysical Research Letters,1999, 26(15): 2 375-2 378.
[20] Anderson J R. The latitude-height structure of 40-50 day variations in the atmospheric angular momentum[J].Journal of the Atmospheric Sciences,1983, 40: 1 877-1 883.
[21] Cai M, Ren R C. Meridional and Downward Propagation of Atmospheric Circulation Anomalies Part 1: Northern Hemisphere Cold Season Variability[J].Journal of the Atmospheric Sciences,2007, 64: 1 880-1 901.
[22] Cai M, Ren R C. 40-70 day meridional propagation of global circulation anomalies[J].Geophysical Research Letters, 2006,4(33):L06818.
[23] Liu Yi, Lu Chun Hui, Guan Zhaoyong, et al. A dynamical diagnosis of stratospheric Polar vortex viewed in an isentropic potential vorticity coordinate during 2003-2004 winters[J].Acta Meteorologica Sinca, 2009(in press).[刘毅,陆春晖,管兆勇,等.2003-2004年冬季北半球平流层极涡在等熵位涡坐标下的动力诊断分析[J]. 气象学报,2009(待刊).]
[24] Liu Y, Wang H P , Cai Z N. Satellite observation of 2003-2004 stratospheric sudden warming from MIPAS measurement[J]. European Space Agency Publing, 2008,655:7.
[25] Liu Y, Liu C X, Wang H P,et al. Atmospheric tracers during the 2003-04 stratospheric warming event and impact of ozone intrusions in the troposphere[J].Atmospheric Chemistry and Physics Discussions,2008, 8: 13 633-13 666.
[26] Manney G L, Froidevaux L, Waters J W, et al. Formation of low-ozone pockets in the middle stratospheric anticyclone during winter[J].Journal of Geophysical Research,1995, 100 (D7): 13 939-13 950.
[27] Liu Chuanxi, Wang Haiping, Liu Yi. Behavior of the Polar stratospheric methane and water vapor during the boreal 2003-2004 stratospheric sudden warming[J].Progress in Natural Science,2009(in press).[刘传熙,王海平,刘毅. 2003—2004年冬季北半球爆发性增温期间极地平流层甲烷、水汽的演变特征[J].自然科学进展,2009(待刊).]
[28] Hoskins B J. Towards a PVθ view of the general circulation[J].Tellus,1991, 43: 27-35.
[29] Brewer A W. Evidence for a world circulation provided by the measurement of helium and water vapor distribution in the stratosphere[J].Quarterly Journal of the Royal Meteorological Society,1949, 75: 351-363.
[30] Dobson G M B. Origin and distribution of polyatomic molecules in the atmosphere[J].Proceedings of the Royal Society of London,1956,236:187-193.

[1] 张宏芳,潘留杰,侯建忠,李明娟. 陕西暖季雷暴的主模态及其可能的影响机制[J]. 地球科学进展, 2013, 28(9): 1025-1035.
[2] 徐晓斌,葛宝珠,林伟立. 臭氧生成效率(OPE)相关研究进展[J]. 地球科学进展, 2009, 24(8): 845-853.
[3] 陈文,魏科. 大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用[J]. 地球科学进展, 2009, 24(3): 272-285.
[4] 陈泽宇,吕达仁. 利用卫星数据考察平流层传播性行星波活动特征[J]. 地球科学进展, 2009, 24(3): 320-330.
[5] 王革丽,吕达仁,杨培才. 人类活动对大气臭氧层的影响[J]. 地球科学进展, 2009, 24(3): 331-337.
[6] 吕达仁,卞建春,陈洪滨,陈月娟,陈泽宇,胡永云,刘毅,任荣彩,田文寿. 平流层大气过程研究的前沿与重要性[J]. 地球科学进展, 2009, 24(3): 221-227.
[7] 胡永云,丁 峰,夏 炎. 全球变化条件下的平流层大气长期变化趋势[J]. 地球科学进展, 2009, 24(3): 242-251.
[8] 胡永云. 关于平流层异常影响对流层天气系统的研究进展[J]. 地球科学进展, 2006, 21(7): 713-720.
[9] 王庚辰;孔琴心;陈洪滨;宣越健;万小伟. 北京上空大气臭氧垂直分布的特征[J]. 地球科学进展, 2004, 19(5): 743-748.
[10] 王庚辰,孔琴心,宣越健,万小伟,陈洪滨,马舒庆. 中国大气臭氧探空仪的研制和应用[J]. 地球科学进展, 2003, 18(3): 471-475.
[11] 郭正府,刘嘉麒. 火山活动与气候变化研究进展[J]. 地球科学进展, 2002, 17(4): 595-604.
[12] 石广玉,白宇波,岩坂泰信,大桥铁弥. 拉萨上空大气臭氧垂直分布的高空气球探测[J]. 地球科学进展, 2000, 15(5): 522-524.
[13] 王体健,孙照渤. 臭氧变化及其气候效应的研究进展[J]. 地球科学进展, 1999, 14(1): 37-43.
[14] 曲绍厚. 全球大气臭氧层的主要特征和变化趋势[J]. 地球科学进展, 1994, 9(5): 39-47.
[15] 朱复成. 近年来大气科学某些进展及其展望[J]. 地球科学进展, 1992, 7(5): 15-.
阅读次数
全文


摘要