地球科学进展 ›› 2006, Vol. 21 ›› Issue (8): 819 -829. doi: 10.11867/j.issn.1001-8166.2006.08.0819

寒区水文过程研究 上一篇    下一篇

内陆河高寒山区流域分布式水热耦合模型(Ⅱ):地面资料驱动结果
陈仁升,康尔泗,吕世华,吉喜斌,阳勇,张济世   
  1. 中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2006-03-18 修回日期:2006-06-29 出版日期:2006-08-15
  • 通讯作者: 陈仁升 E-mail:crs2008@lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目“内陆河流域高寒山区多年冻土活动层产流机制观测试验研究”(编号:40401012)和“长江源区冰雪水文过程及对气候变暖的响应研究”(编号:40301010);中国科学院寒区旱区环境与工程研究所知识创新前沿工程项目“黑河流域交叉集成研究的模型开发和模拟环境建设”(编号:2003102)和“内陆河流域高寒山区多年冻土活动层产流机制观测试验研究”(编号:2004112);中国科学院知识创新工程重要方向性项目“内陆河(黑河)水—土—气—生观测与综合研究”(编号:KZCX3-SW-329)资助.

A Distributed Water-Heat Coupled (DWHC) Model for Mountainous Watershed of An Inland River Basin(Ⅱ): Model Results Using the Measured Data at the Meteorological & Hydrological Stations

Chen Rensheng,Kang Ersi,Lü Shihua,Ji Xibin,Yang Yong,Zhang Jishi   

  1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2006-03-18 Revised:2006-06-29 Online:2006-08-15 Published:2006-08-15

以黑河出山日平均流量作为对比,利用26个降水站点、11个气温站点和14个潜在蒸发站点2000年日资料,模型设计了6套气象因子空间分布方案,进行数值模拟试验,结果表明,在黑河流域现有观测站点的情况下,利用各种空间插值方法所得结果基本相当,考虑地面高程的三维插值与不考虑地面高程的二维插值结果相差不大,补充距离研究区较远的站点观测资料,模型结果反而变差。最终模型采用基于二维算法的最近距离法(nearest),利用2000年资料校正模型,计算与实测黑河日出山平均流量序列的效率系数为0.6101,平衡误差为0.0808%。以1999年资料验证模型,效率系数和平衡误差分别为0.6270和-2.9824%。模型基于水热连续方程模拟了黑河山区流域水热交换和耦合过程,探讨了流域的水量平衡,分析了水量平衡因子的时空分布,其模拟结果表明,内陆河高寒山区流域主要为浅表产流,高山草甸具有拦蓄降水和水源涵养作用,并反映了高山地区浅表土壤地下厚层冰的聚集过程。各种模型结果与本区野外实际调查结果基本一致,也符合当前对寒区流域水文循环过程的定性认识。

Using the daily precipitation data at the 26 hydrological & meteorological stations, daily averaged air temperature data at the 11 stations, and daily pan evaporation data at the 14 stations in 2000, the distributed water-heat coupled model (DWHC) was calibrated. Using the daily averaged runoff data in 2000 at the Yingluoxia station where the runoff amount of Heihe mountainous river basin was measured to calibrate, 6 numerical tests that used different spatial interpolation methods to calculate the daily precipitation, daily averaged air temperature, and daily pan evaporation (E601) in each grid, were put up. Due to the spatial sparsity and asymmetry of the hydrological and meteorological stations, the results of the 6 numerical tests have little differences. The three-dimensional interpolation methods considering the altitudes are little different from the methods that take no account of the altitudes. The daily data measured at the 2 stations farside from the research basin were added for use in the model, and the model results were not better. At last the 2-dimensional interpolation method with a named as nearest, was used in the model. The Nash-Sutcliffe equation value is of 0.6101, and the balance error is of 0.0808% for the calibration processes. Using the daily data in 1999 to validate the model, the Nash-Sutcliffe equation value and balance error is about 0.6270 and 2.9824%, respectively. Because the soil and vegetation data are not detailed and very short, the model results are only qualitative to some extent. The water balance, and the spatial and temporal distributions of the hydrological factors, were both discussed. The model results showed that, in the high and cold regions, the runoff production processes mainly occurred at the land surfaces and in the low soil layers, the alpine meadow held up precipitation to a large extent, and there produced some ground ices due to the heat-water coupled processes in the high mountainous regions.

中图分类号: 

[1] Chen Rensheng, Lü Shihua, Kang Ersi, et al. A distributed water-heat coupled (DWHC) model for mountainous watershed of an inland river basin (): Model structure and equations[J]. Advance in Earth Science, 2006, 21(8):806-818.[陈仁升,吕世华,康尔泗,. 内陆河高山山区流域分布式水热耦合模型():模型原理 [J]. 地球科学进展, 2006, 21(8):806-818.]

[2] Chen Rensheng, Kang Ersi, Yang Jianping, et al. A distributed daily runoff model of inland river mountainous basin [J]. Advance of Earth Science, 2003,18(2):198-206. [陈仁升,康尔泗,杨建平,. 内陆河流域分布式日出山径流模型 [J]. 地球科学进展,2003,18(2):198-206.]

[3] Kang Ersi, Cheng Guodong, Lan Yongchao, et al. A model for simulating the response of runoff from the mountainous watershed of inland river basins in the arid area of northwest China to climatic changes [J]. Science in China (Series D), 1999, 42(suppl.): 52-63.

[4] Neilsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool theoretical documentation, version 2002.httpwww.brc.larrus.edu/swat/.

[5] Chen Rensheng, Kang Ersi, Yang Jianping, et al. A distributed runoff model for inland river mountainous basin of northwest China [J]. Journal of Desert Research, 2004, 24(4): 416-424. [陈仁升,康尔泗,杨建平,. 内陆河流域分布式水文模型——以黑河干流山区建模为例 [J]. 中国沙漠,2004,24(4): 416-424.]

[6] Li Xin, Cheng Guodong, Lu Ling. Comparison study of spatial interpolation methods of air temperature over Qinghai-Xizang plateau [J]. Plateau Meteorology,2003,22(6):565-573. [李新,程国栋,卢玲. 青藏高原气温分布的空间插值方法比较 [J]. 高原气象,2003,22(6):565-573.]

[7] Li Jun, Huang Jingfeng. Review on methods in simulating spatial distribution of temperature in mountains [J]. Journal of Mountain Science, 2004, 22(1):126-132. [李军,黄敬峰. 山区气温空间分布推算方法概述 [J]. 山地学报,2004, 22(1):126-132.]

[8] Zhang Hongliang, Ni Shaoxiang, Deng Ziwang, et al. A method of spatial simulating of temperature based Digital Elevation Model (DEM) in mountain area [J]. Journal of Mountain Science,2002,20(3):360-364.[张洪亮,倪绍祥,邓自旺,. 基于DEM的山区气温空间模拟方法 [J]. 山地学报,2002,20(3):360-364.]

[9] Nash J E,Sutcliffe J V. River flow forecasting through conceptual models, 1, A discussion of principles [J]. Journal of Hydrology, 1970(10): 282-290.

[10] Loumagne C, Chkir N, Normand M. Introduction of the soil/vegetation/atmosphere continuum in a conceptual rainfall/runoff model [J]. Hydrological Science Journal, 1996, 41(6): 889-902.

[11] Marco Franchini,Michele Pacciani. Comparative analysis of several conceptual rainfall-runoff models [J]. Journal of Hydrology, 1991(122):161-219.

[12] Kang Ersi, Cheng Guodong, Song Kechao, et al. Simulation of energy and water balance in Soil-Vegetation- Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest Chin [J]. Science in China (Series D), 2005, 48(4): 538-548.

[13] Fu Huien, Che Kejun. Study on Hydrological effect of forest in North slope of Qilian Mountain[C]Forest, Hydrology and Watershed Administration Committee of Forestry, China, ed. China Collection of academical papers on forestry and Hydrology. Beijing: Press of Geodesy Cartography, 1989: 111-118. [傅辉恩,车克钧. 祁连山(北坡)森林水文效应的研究 [C]中国林学森林水文与流域管理委员会主编. 全国森林水文学术讨论文集. 北京:测绘出版社,1989. 111-118.]

[14] Zhou Youwu. Initial investigation on frozen soil Tibetan Plateau [J]. Chinese Science Bulletin, 1963,(2):60-64. [周幼吾. 青藏高原冻土初步考察 [J]. 科学通报,1963,(2):60-64.]

[15] Cheng Guodong. The mechanism of repeated-segregation of the formation of thick layered ground ice [J]. Cold Regions Science and Technology, 1983(8): 57-66.

[16] Wang Jiacheng, Cheng Guodong, Zhang Hongding, et al. Experimental study on conditions for ice formation of saturated sand in freezing and thawing cycles [J]. Journal of Glaciology and Geocryology,1992,14(2):101-106. [王家澄,程国栋,张宏鼎,. 饱水砂土反复冻融时成冰条件的试验研究 [J]. 冰川冻土,1992,14(2):101-106.]

[17] Chen Rensheng, Kang Ersi, Yang Jianping, et al. Application of Topmodel to simulate runoff from Heihe Mainstream Mountaindus Basin [J]. Journal of Desert Research, 2003, 23(4): 428-434. [陈仁升,康尔泗,杨建平,. Topmodel在黑河干流出山径流模拟中的应用 [J]. 中国沙漠,2003, 23(4): 428-434.]

[18] Xia Jun, Wang Gangsheng, Tan Ge, et al. Development of distributed time-variant gain model for simulating nonlinear hydrological systems [J]. Science in China (Series D), 2005,48(6):713-723.

[19] Xia Jun, Wang Gangsheng, Lü Aifeng, et al. A Research on distributed time variant gain modeling [J]. Acta Geographica Sinica,2003,58(5):789-796. [夏军,王纲胜,吕爱锋,. 分布式时变增益流域水循环模拟 [J]. 地理学报,2003,58(5):789-796.]

[1] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[2] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[3] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[4] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[5] 胡广录,赵文智,谢国勋. 干旱区植被生态需水理论研究进展[J]. 地球科学进展, 2008, 23(2): 193-200.
[6] 康尔泗,陈仁升,张智慧,吉喜斌,金博文. 内陆河流域水文过程研究的一些科学问题[J]. 地球科学进展, 2007, 22(9): 940-953.
[7] 张耀存,傅小锋. 苏南地区土地利用状况变化对区域气候环境的可能影响[J]. 地球科学进展, 1998, 13(4): 409-411.
阅读次数
全文


摘要