地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 198 -206. doi: 10.11867/j.issn.1001-8166.2003.02.0198

研究论文 上一篇    下一篇

内陆河流域分布式日出山径流模型——以黑河干流山区流域为例
陈仁升 1,2,康尔泗 1,杨建平 1,张济世 1   
  1. 1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;2.北京大学遥感与GIS研究所,北京 100871
  • 收稿日期:2002-04-03 修回日期:2002-10-15 出版日期:2003-04-10
  • 通讯作者: 陈仁升 E-mail:crs2008@ns.lzb.ac.cn
  • 基金资助:

    中国科学院知识创新工程重大项目“西北干旱区水文—生态系统观测实验研究”(编号:KZCX1-10-03-01);中国科学院寒区旱区环境与工程研究所知识创新项目“黑河流域气候环境系统模式研究”(编号:CACX210036)和“内陆河流域SVAT系统和陆面水文过程研究”(编号:CACX210016)资助.

A DISTRIBUTED DAILY RUNOFF MODEL OF INLAND RIVER MOUNTAINOUS BASIN

Chen Rensheng 1,2,Kang Ersi 1,Yang Jianping 1,Zhang Jishi 1   

  1. 1.Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2.RS and GIS Institute,Peking University, Beijing 100871,China
  • Received:2002-04-03 Revised:2002-10-15 Online:2003-04-10 Published:2003-04-01

应用常规的气象水文数据并结合GIS,建立了一个适合西北干旱区内陆河山区流域的以日为步长的分布式径流模型,并对黑河干流山区出山径流进行了模拟计算和讨论。模型以子流域作为最小的产流、汇流单元,根据植被覆盖将各子流域分为裸地区、乔木区、牧草区和冰川区,并根据实际调查将土壤分为 3层,各分区单独进行水量平衡计算。产流过程以土壤储水能力和储水量表征,而储水能力和储水量等则由土壤的孔隙度、干密度和厚度等表征。入渗原理基于土壤储水率平衡原理,并考虑重力势的作用。实际蒸散发与蒸发力和土壤体积含水量的乘积成正比,不同的土壤和植被具有不同的调节参数。模拟结果表明,模拟效果较差的原因是区域日降水过程具有较大的随机性,难以用有限的站点合理计算区域日降水量。寻找一个合适的区域日降水量计算方法是目前少资料大型流域分布式水文模型模拟成功的关键。

Distributed hydrological model has been studied worldwide, while rarely used in basin scale, because it requires too many parameters and too many hydrologic data, meteorological data, soil data, vegetation data etc. The water resource is very deficient in inland river basin of Northwest China, and the runoff from mountainous basin basically represents the water resources amount of the inland arid region. In order to simulate and predict the runoff from mountainous watershed of the inland river basin, to predict the futuristic runoff under the global warming, and to answer the ecohydrologic effects of vegetations, in this paper, the author want to use the routine hydrometeorologic data to create a distributed model, coupled with GIS and RS techniques and data. The model takes sub-basin as the minimal confluent unit, divides the main soil of the basin into 3 layers, and divides the vegetation type as forest and pasture. Because there is little data required by the standard distributed model, this model gives some conceptual parameters. The data used in the model are precipitation, air temperature, runoff data, soil weight water content, soil depth, soil bulk density, soil porosity, vegetation cover etc. The model defines and introduces some concepts: soil volume water content, soil water content capacity, soil water amount, and hold that if the water amount is more than the water content capacity, there will be surface runoff. The actual evaporation is proportional tothe product of the potential evaporation and soil volume water content, and for different soil type and different vegetation type, the model give a different parameter. The studied basin is Heihe mainstream mountainous basin, with a drainage area 10 009 km2, with only 8 precipitation stations, 5 air temperature and 6 evaporation stations. The model simulates the runoff variation well, while the amount is not so well. The reason is that, there are too little hydrometeorologic stations in or near the basin, while the daily precipitation varies randomly. The author use several area daily precipitation methods, however, none of which works. At present there is no suitable method to calculate the whole basin precipitation using rare station data. Therefore, one way is to add the observed stations, to create new calculation method, and to use new way to observe precipitation. It goes without saying, the model could not be used presently. However, from this numerical experiment, the modelers can get some experiences.

中图分类号: 

[1] Kang Ersi, Cheng Guodong, Lan Yongchao, et al. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes [J]. Science in China (Series D), 1999, 29(supp.1): 52-63. [康尔泗,程国栋,蓝永超,. 西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J]. 中国科学:D,1999, 29(增刊.1):48-54.]

[2] Tang Maocang. Rudiment analysis of plateau monsoon annual variation [J]. Plateau Meteorology, 1984, 3(3): 76-82. [汤懋苍. 高原季风年际变化的初步分析[J]. 高原气象,1984,33:76-82.]

[3] Liu Xiaodong, Jiao YanJun. Sensitivity of the east Asian monsoon climate to the Tibetan plateau uplift [J]. Chinese Journal of Atmosphere Sciences, 2000, 24(5): 593-607. [刘晓东,焦彦军. 东亚季风对青藏高原隆升的敏感性研究[J]. 大气科学,2000,245:593-607.]

[4] Ding YongJian, Ye Baisheng, Zhou WenJuan. Temporal and spatial precipitation distribution in the Heihe catchment, Northwest China, during the past 40 years[J]. Journal of Glaciology and Geocryology, 1999, 21(1): 42-48. [丁永建,叶佰生,周文娟. 黑河流域过去40a来降水时空分布特征[J]. 冰川冻土,1999,211:42-48.]

[5] Li PeiJi, Mi Desheng. Perpetual snow distribution of China [J]. Journal of Glaciology and Geocryology, 1983, 5(4):9-13. [李培基,米德生. 中国积雪分布[J]. 冰川冻土,1983,54:9-13.]

[6] Yang Zhenniang. Glacier water resources and effect of glacier water in stream runoff in Qilian mountain[A]. In: Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences ed. Memoirs of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, No.7[C]. Beijing: Science Press, 1992. 10-20. [杨针娘. 祁连山冰川水资源及其在河流中的作用[A]. :中国科学院兰州冰川冻土研究所编辑. 中国科学院兰州冰川冻土研究所集刊,7[C]. 北京:科学出版社,1992. 10-20.]

[7] Fu Huien, Che KeJun. Study on hydrological effect of forest in north slope of Qilian mountain[A]. In: Forest, Hydrology and Watershed Administration Committee of Forestry, China, ed. China Collection of Academical Papers on Forestry and Hydrology[C]. Beijing: Survey Press, 1989. 111-118. [傅辉恩,车克钧. 祁连山(北坡)森林水文效应的研究[A]. :中国林学森林水文与流域管理委员会主编. 全国森林水文学术讨论文集[C]. 北京:测绘出版社,1989. 111-118.]

[8] Wang Jinye, Che KeJun, Yan Kelin, et al. Analysis of the runoff components in the forestry area of the Qilian mountains and their temporal and spatial variation [J]. Journal of Glaciology and Geocryology, 1999, 21(1):59-63. [王金叶,车克钧,闫克林,. 祁连山森林覆盖区河川径流组成与时空分布变化分析[J]. 冰川冻土,1999,211:59-63.]

[9] Stephen J Burges. Trends and directions in hydrology [J]. Water Resources Research, 1986, 22(9):1-5.

[10] Vasiliev O F. Mathematical modeling of hydraulic and hydrological processes in water bodies and streams (review of works conducted by the Siberian division of the Russian Academy of Sciences)[J]. Water Resources,1999, 26(5): 537-546.

[11] Peter A Troch, Marco Mancini, Claudio Paniconi, et al. Evaluation of a distributed catchment scale water balance model [J]. Water Resources Research, 1993, 29(6): 1 805-1 817.

[12] Wigmosta M S, Vail L W. A distributed hydrology-vegetation model for complex terrain [J]. Water Resources Research, 1994, 30(6): 1 665-1 679.

[13] Rodger B G,Lan D M,Thomas A M. Physically based hydrologic modeling 1: A terrain-based model for investigative purpose [J]. Water Resources Research, 1992, 28(10): 2 639-2 658.

[14] Rui Xiaofang. Some problems in research of watershed hydrology [J]. Advances in Hydrology, 1997, 8(1): 94-98. [芮孝芳. 流域水文模型研究中的若干问题[J]. 水科学进展,1997,81:94-98.]

[15] Guo Shenglian, Xiong Lihua, Yang Jin, et al. A DEM physically based distributed hydrological model [J]. Journal of Wuhan University of Hydraulic & Electric Engineer, 2000, 33(6): 1-5. [郭生练,熊立华,杨井,. 基于DEM的分布式流域水文物理模型[J]. 武汉水利电力大学学报,2000,336:1-5.]

[16] Huang Ping, Zhao Jiguo. A study on distributed hydrological mathematical model of basin and applied prospect [J]. Hydrology, 1997, (5):5-10. [黄平,赵吉国. 流域分布型水文数学模型的研究及应用前景展望[J]. 水文,1997,5:5-10.]

[17] Kang Ersi, Cheng Guodong, Lan Yongchao,et al. Application of a conceptual hydrological model in the runoff forecast of a mountainous watershed[J]. Advances in Earth Sciences,2002,17(1):18-26.[康尔泗,程国栋,蓝永超,. 概念性水文模型在出山径流预报中的应用[J]. 地球科学进展,2002,171:18-26]

[18] Ye Duzheng, Fu Zongbin, Dong WenJie. Progresses and future trends of global change sciences[J]. Advances in Earth Sciences,2002,174:467-469. [叶笃正,符淙斌,董文杰. 全球变化科学进展与未来趋势[J]. 地球科学进展,2002,174:467-469.]

[19] Ren Liliang, Liu xinren. Application of digital elevation model to topological evaluation of drainage system [J]. Advances in Hydrology, 1999, 10(2): 129-134. [任立良,刘新仁. 数字高程模型在流域水系拓朴结构计算中的应用[J]. 水科学进展,1999,102:129-134.]

[20] Fairfield J, Leymarie P. Drainage network from grid digital elevation models [J]. Water Resources Research, 1991, 27(4): 29-61.

[21] Garbrecht J. Determination of the execution sequence of channel flow for cascade routing in a drainage network [J]. Hydrosoft, 1988, 1(3): 129-138.

[22] Levenberg K. A method for the solution of certain nonlinear problems in least squares [J]. Quarterly of Applied Mathematics,1944,2:164-168.

[23] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models, 1: A discussion of principles[J]. Journal of Hydrology, 1970, 10: 282-290.

[24] Tan Guanri, Yan Jiyuan, Zhu Ruida. Applied Climatology [M]. Shanghai: Shanghai Science and Technology Press, 1985. 194-195. [谭冠日,严济远,朱瑞达. 应用气候[M].上海:上海科学技术出版社,1985. 194-195.]

[25] Kang Ersi, Ohmura A. A energy, water and mass balance and runoff modeling in a glacierized basin of Tianshan mountain [J]. Science in China(B), 1994, 24(9): 983-991. [康尔泗,Ohmura A. 天山冰川作用流域能量、水量和物质平衡及径流模型[J]. 中国科学:B,1994,249: 983-991.]

[26] Daqing Yang, Barry E Goodison, John R Metcalfe, el al. Quantification of precipitation measurement discontinuity induced by wind shields on national gauges [J]. Water Resources Reaserach, 1999,352:491-508.

[27] Loumagne C, Chkir N, Normand M. Introduction of the soil/vegetation/atmosphere continuum in a conceptual rainfall/runoff model [J]. Hydrological Science Journal, 1996, 41(6): 889-902.

[28] Marco Franchini, Michele Pacciani. Comparative analysis of several conceptual rainfall-runoff models [J]. Journal of Hydrology, 1991, 122: 161-219.

[29] General Overhaul Office of Gansu Provice. Soil in Gansu Province [M]. Beijing: Agriculture Press, 1993:127-486. [甘肃省土壤普查办公室. 甘肃土壤[M]. 北京:农业出版社,1993. 127-486.]

[30] General Overhaul Office of Gansu Provice. Soil Category of Gansu Provice [M]. Lanzhou: Gansu Science and Technology Press, 1993:83-436. [甘肃省土壤普查办公室. 甘肃土种志[M]. 兰州:甘肃科学技术出版社,1993. 83-436.]

[1] 艾鑫,马明国,王雪梅,匡鸿海. 全球地球科学研究的可视化分析[J]. 地球科学进展, 2020, 35(12): 1270-1280.
[2] 张勇,史学正,于东升,王洪杰,赵永存,孙维侠. 属性数据与空间数据连接对土壤有机碳储量估算的影响[J]. 地球科学进展, 2008, 23(8): 840-847.
[3] 杨勤科,李锐,曹明明. 区域土壤侵蚀定量研究的国内外进展[J]. 地球科学进展, 2006, 21(8): 849-856.
[4] 张洪岩;王钦敏;鲁学军;励惠国. 地学信息图谱方法前瞻[J]. 地球科学进展, 2004, 19(6): 997-1001.
[5] 郑贵洲;申永利. 地质特征三维分析及三维地质模拟现状研究[J]. 地球科学进展, 2004, 19(2): 218-223.
[6] 马蔚纯,陈立民,李建忠,高效江,林卫青. 水环境非点源污染数学模型研究进展[J]. 地球科学进展, 2003, 18(3): 358-366.
[7] 刘刚,吴冲龙,汪新庆. 计算机辅助区域地质调查野外工作系统研究进展[J]. 地球科学进展, 2003, 18(1): 77-084.
[8] 李德仁. 对地观测与地理信息系统[J]. 地球科学进展, 2001, 16(5): 689-693.
[9] 李本纲,陶 澍,林健枝,程寿全. 地理信息系统与主成分分析在多年气象观测数据处理中的应用[J]. 地球科学进展, 2000, 15(5): 509-515.
[10] 李 新,程国栋,卢 玲. 空间内插方法比较[J]. 地球科学进展, 2000, 15(3): 260-265.
[11] 倪绍祥,蒋建军,王杰臣. 遥感与GIS在蝗虫灾害防治研究中的应用进展[J]. 地球科学进展, 2000, 15(1): 97-100.
[12] 李 岩,迟国彬,廖其芳,李鹏德. 地理信息系统软件集成方法与实践[J]. 地球科学进展, 1999, 14(6): 619-623.
[13] 李德仁,李清全. 论地球空间信息科学的形成[J]. 地球科学进展, 1998, 13(4): 319-326.
[14] 李德仁. 航天技术在测绘、遥感和地理信息系统中的应用[J]. 地球科学进展, 1995, 10(5): 417-426.
[15] 龚子同. 土壤地理研究的发展[J]. 地球科学进展, 1991, 6(3): 44-49.
阅读次数
全文


摘要