地球科学进展 ›› 1999, Vol. 14 ›› Issue (5): 433 -439. doi: 10.11867/j.issn.1001-8166.1999.05.0433

学科发展与研究 上一篇    下一篇

水—岩化学作用对岩体变形破坏力学效应研究进展
汤连生 ①②,王思敬   
  1. ①中国科学院地质研究所工程地质力学开放实验室,北京 100029;②中山大学地球科学系,广东 广州 510275
  • 收稿日期:1999-01-18 修回日期:1999-04-12 出版日期:1999-10-01
  • 通讯作者: 汤连生,男,1963年7月生,副教授,现在中山大学地球科学系从事工程地质、岩土力学教学与科研工作。
  • 基金资助:

    国家自然科学基金项目“受力岩体渗透、水化学综合作用导致破坏的机理”(编号:59779019)和广东省自然科学基金项目“渗透、水化学综合作用对岩体变形破坏的力学效应研究”(编号:970127)资助。

PROGRESS IN THE STUDY ON MECHANICAL EFFECT OF THE CHEMICAL ACTION OF WATER-ROCK ON DEFORMATION AND FAILURE OF ROCKS

TANG Liansheng ①②,WANG Sijing   

  1. ①Institute of Geology,The Chinese Academg of Sciences,Beijing 100029,China;②Department of Earth Sciences,Zhongshan University,Guangzhou 510275,China
  • Received:1999-01-18 Revised:1999-04-12 Online:1999-10-01 Published:1999-10-01

水—岩化学作用对岩体变形破坏力学效应的研究涉及力学和化学两方面,也即为地球化学与岩体力学两个研究领域的交叉。针对水化学作用对岩体力学性质的影响机理,较系统地总结了该研究领域中的现状和研究新进展,分析了其研究方法,指出了今后的研究方向和主要研究内容,并认为此方面的研究将在工程地质学中占重要地位。

The research on mechanical effect of the chemical action of water-rock on deformation and failure of rocks involves two aspects of mechanics and chemistry. It is the cross between geochemistry and mechanics. In connection with the mechanism of effects of the chemical action of water-rock on deformation and failure of rocks, the research significance, the present state, research methods and the developments in this research domain are summarized systematically, and the content and methods of the research are analyzed. The research contents of the present state expounded in this paper include (1) the mechanism on the mechanical effects of the chemical action of water-rock on fracture mechanics and failure of rocks, (2) the macroscopic relations of the chemical action of water-rock and earthquakes and landslide stability, (3) experimental studies of water-rock interaction, (4) chemical damage mechanics and engineering geology geochemistry. Authors prospect the future of researching mechanical effect of the chemical action of water-rock on deformation and failure of rocks, and the research would be possessed of important position in studying engineering geology.

中图分类号: 

〔1〕丁抗.水岩作用的地球化学动力学〔J〕.地质地球化学,1989,17(6):29~38.
〔2〕汤连生,王思敬.工程地质地球化学的发展前景及研究内容和思维方法〔J〕.大自然探索,1999,18(2): 35~40.
〔3〕汤连生,周萃英.渗透与水化学作用之受力岩体的破坏机理〔J〕.中山大学学报(自然科学版),1996, 35(6):95~100.
〔4〕常春,周德培,郭增,等.水对岩石屈服强度的影响〔J〕.岩石力学与工程学报,1998,17(4):407~411.
〔5〕汤连生,王思敬,张鹏程,等.水—岩土化学作用与地质灾害防治〔J〕.中国地质灾害与防治学报,1999 (待刊).
〔6〕Dunning J D, Miller M E. Effects of pore fluid chemistry on stable sliding of Bereas and stone〔J〕. Pageoph, 122(1984/1985):447~462.
〔7〕苟晓琴,陈迪云.当代环境中石造物的腐蚀破坏机理和保护〔J〕.华东地质学院学报,1994,17(4):389~394.
〔8〕Wiederhorn S M, Johnson H. Effect of electrolyte pH on crack propagation in glass〔J〕.J Am Ceram Soc,1973,56:192~197.
〔9〕Atkinson B K, Meredith P G. Stress corrosion cracking of quartz: a note on the influence of chemical environment〔J〕.Tectonophysics,1981,77:T1~11.
〔10〕Michalske T A, Freiman S W. A molecular interpretation of stress corrosion in silica〔J〕.Nature,1982,295: 511~512.
〔11〕Atkinson B K. A Fracture mechanics study of subcritical ten-sile cracking of quartz in wet environments〔J〕. Pure Appl Geophys,1979,117:1 011~1 024.
〔12〕Matin R J.Time-dependent crack growth in quartz and its application to the creep of rocks〔J〕.J Geophys Res,1972,77:1 405~1 419.
〔13〕Atkinson B K. Subcritical crack growth in geological mater-ials〔J〕.J Geophys Res,1984,89(B6):4 077~4 114.
〔14〕Charles R J. Static fatigue of glass〔J〕.J Appl Phys,1958,29:1 549~1 560.
〔15〕Freiman S W. Effects of chemical environments on slow crack growth in glasses and ceramics〔J〕. J Geophys Res,1984,89(B6):4 072~4 076.
〔16〕Bulau J R, Tittmann B R, Abdel-Gawad M,et al. The role of aqueous fluids in the internal friction of rock〔J〕.J Geophys Res,1984,89(B6):4 207~4 212.
〔17〕Simmons C J, Freiman S W. Effect of corrosion processes on subcritical crack growth in glass〔J〕.J Am Ceram Sco,1981,64:683~686.
〔18〕李广贺,安奎进.任意盐度地下水中离子活度系数运算模型〔J〕.水文地质工程地质,1995,22(3): 33~35.
〔19〕Swoboda-colberg N G, Drever. Mineral dissolution rates in plot-scale field and laboratory experiments〔J〕. Chemical Geology,1993,105:51~69
〔20〕Wiederhorn S M. Effects of environment on the fracture of glass〔A〕. In: Westwood A R, Stoloffed N S, eds.Environment-Sensitive Mechanical Behavior〔C〕.New York:Gordon and Break,1978.293~317.
〔21〕Swanson P L. Subcritical crack growth and other time-and environment-dependent behavior in crustal rocks〔J〕. J Geophys Res,1984,89(B6):4 137~4 152.
〔22〕Wiederhorn S M. Mechanism of subcritical crack growth in glass〔A〕.In: Bradt R C,Hasselmam D P H, Lange F F,eds. Fracture Mechanics of Ceramics〔C〕. New York:Plenum,1978,Vol 4.549~580.
〔23〕Atkinson B K. Fracture toughness of Tennessee sandstone and carrara mable using the double torsion testing method〔J〕. Int J Rock Mech Min Sci,Geomech Abstr,1979,16:49~53.
〔24〕Atkinson B K. Stress corrosion and the rate-dependent tensile failure of a fine-grained quartz rock〔J〕.Tectonophysics,1980,65: 281~290.
〔25〕Henry J P. Mecanique lineaire de la rupture applique al' etude de la fissuration et de la fracture de roches calcaires〔D〕.Ph D thesis,Univ des Sci et Tech De Lille,Lille,France,1978.
〔26〕Anderson D L , Grew PC. Stress corrosion theory of crack propagation with application to geophysics〔J〕.Rev Geophys Space Phys,1977(15):77~104.
〔27〕余寿文,冯西桥.损伤力学〔M〕.北京:清华大学出版社,1997.1~6,20~196.
〔28〕杨杰英.武定6.5级地震前的水化学异常〔J〕.华南地震,1997,17(1):50~57.
〔29〕Tsunogai U.日本神户地震对地下水的前兆化学变化〔J〕.常丕兴译.国外地质与勘测,1996,12(4):31~32,36.
〔30〕王秀雅,郭桂荣,谢佐骖.广东省地下水化学与地震的关系〔J〕.华南地震,1988,8(4):59~64.
〔31〕颜玉定.饱水时间对岩石动态参数的影响〔A〕.岩土力学与工程的新进展〔C〕.广州:华南理工大学出版社,1996.7~11.
〔32〕Dunning J, Douglas B, Miller M , McDonald S. The role of the chemical environment in frictional deformation: Stress corrosion cracking and comminution〔J〕.Pure Appl Geophys,1994,143 (1/3):151~178.
〔33〕马胜利,岛本利彦.蒙脱石的脱水作用对断层摩擦本构行为的影响〔J〕.地震地质,1995,17(4):289~296.
〔34〕杨荣兴,周王旬若,张荣华.水—岩反应实验研究现状与进展〔J〕.现代地质,1995,9(4):419~422.
〔35〕谭凯旋,戴塔根.非线性地球化学动力学〔J〕.地球科学进展,1998,13(2):145~150.
〔36〕苏根利,谢鸿森,丁东业,等.超临界水的物理化学性质及意义〔J〕.地质地球化学,1988,26(2):83~89.
〔37〕康红普.水对岩石的损伤〔J〕.水文地质工程地质,1994,21(3):39~41.
〔38〕谢和平.岩石混凝土损伤力学〔M〕.徐州:中国矿业大学出版社,1991.
〔39〕汤连生,周萃英.一门新的交叉学科——工程地球化学〔A〕.三峡库区地质环境暨第二届中日地层环境力学国际学术讨论会论文集〔C〕.北京:煤炭工业出版社,1996.138~141.
〔40〕王思敬.论人类工程活动与地质环境的相互作用及其环境效应〔J〕.地质灾害与环境保护,1997,8(1): 19~26.

[1] 李昂,王化锋,宁立波,胡闯,朱晛亭. 边坡裂隙岩体内凝结水形成区域的分布特征[J]. 地球科学进展, 2020, 35(2): 189-197.
[2] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[3] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[4] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[5] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[6] 梁庆国,韩文峰,李雪峰,李德武. 极震区岩体地震动力破坏研究体系框架浅析[J]. 地球科学进展, 2010, 25(1): 43-54.
[7] 赵青,赵其华,彭社琴,陈近中,黄河清. 某水电站坝区高地应力释放现象及成因研究[J]. 地球科学进展, 2009, 24(6): 636-642.
[8] 黄润秋,刘卫华. 滚石在平台上的运动特征分析[J]. 地球科学进展, 2008, 23(5): 517-523.
[9] 龚汉松,杜传杨. 声发射预报地震的岩体力学分析[J]. 地球科学进展, 2008, 23(12): 1293-1298.
[10] 徐则民,黄润秋,唐正光,费维水. 岩体化学风化的非连续性及其科学意义[J]. 地球科学进展, 2006, 21(7): 706-712.
[11] 黄润秋. 中国西南岩石高边坡的主要特征及其演化[J]. 地球科学进展, 2005, 20(3): 292-297.
[12] 聂德新. 岩质高边坡岩体变形参数及松弛带厚度研究[J]. 地球科学进展, 2004, 19(3): 472-477.
[13] 杨坤光,刘强. 花岗岩构造与侵位机制研究进展[J]. 地球科学进展, 2002, 17(4): 546-550.
[14] 柴贺军,黄地龙,黄润秋,刘浩吾. 岩体结构三维可视化模型研究进展[J]. 地球科学进展, 2001, 16(1): 55-59.
[15] 孙和平,许厚泽,徐建桥,柳林涛. 重力场的潮汐变化观测及其研究[J]. 地球科学进展, 2000, 15(1): 53-57.
阅读次数
全文


摘要