地球科学进展 ›› 1998, Vol. 13 ›› Issue (4): 351 -355. doi: 10.11867/j.issn.1001-8166.1998.04.0351

干旱气候变化与可持续发展 上一篇    下一篇

原子力显微镜在粘土矿物学研究中的应用
吴平霄,张惠芬,郭九皋   
  1. 中国科学院广州地球化学研究所 广州 510640
  • 收稿日期:1997-10-28 修回日期:1997-12-29 出版日期:1998-08-01
  • 通讯作者: 吴平霄
  • 基金资助:

    广东省自然科学基金资助项目(批准号:953204)。

THE APPLICATION OF ATOMIC FORCE MICROSCOPE TO CLAY MINERALS

Wu Pingxiao,Zhang Huifen,Guo Jiugao   

  1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640
  • Received:1997-10-28 Revised:1997-12-29 Online:1998-08-01 Published:1998-08-01

研究粘土矿物表面组成与表面结构的手段和方法多种多样,但由于粘土矿物特殊的晶体结构,这些手段和方法都有一定的局限性和不足。原子力显微镜是近年来发展起来的一种能达到原子分辨能力的表面结构分析仪器,能够分辨粘土矿物硅氧四面体片上的六方环结构及八面体片的羟基团,是研究粘土矿物表面反应、表面改性及表面溶蚀作用的重要手段。

There are many methods to study the surface component and structure of clay minerals, how ever these methods have different limitations. The atomic force microscope (AFM) is a recent innovation in instrumentation that provides topographic images, at the atomic scale resolution, of the surfaces of solid materials. It can image the hexagonal arrangement of basal O of the sheet of tetrahedra at molecular resolution and the OH plane of the sheet of octahedra  at at omic resolution. It is becoming most important method to study the surface reaction, treatment and dissolve of clay minerals.

中图分类号: 

[1] Binnig G, Quate C F, Gerber Ch. Atomic force microscope. Physical Review Letters, 1986, 56: 930-933.
[2] Hochella M F, Eggleston C M, Elings V B, et al. Atomic structure and morphology of albite {010} surface: An atomic force microscope and electron diffraction study. American Mineralogist, 1990, 75: 723-730.
[3] Drake B, Prater C B, Weisenhorn A L, et al. Imaging crystals, polymers and processes in water with the atomic force microscope. Science, 1989, 243: 1 586-1 588.
[4] Gould S A C, Drake B, Prater C B, et al. From atoms to integrated circuit chips, blood cells and bacteria with the atomic force microscope. J Vac Sci Technol, 1990, A8: 369-375.
[5] Hansma P K, Elings V B, Marti O, et al. Scanning tunneling microscopy and atomic force microscope: Application to biology and technology. Science, 1988,242: 209-216.
[6] Wicks F J, Kjoller K, Henderson G S. Imaging of the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope. Canadian Mineralogist, 1992, 30:83-91.
[7] Mellini M. The crystal structure of lizardite 1T: hydrogen bonds and ploytypism. American Mineralogist, 1982, 67:1 442-1 445.
[8] Berghmans P A, M uir I J, Adams F C. Surface analysis of chrysophosphate materials. Surface and Interface Analysis,1990,16:575-579.
[9] Gordon A V, Henderson G S, Fawcett J J, et al. Structural relaxation of the chlorite surface by the atomic force microscope. American Mineralogist, 1994, 79:107-112.
[10] Huamin Gan, Bailey G W, Yu Y S. Morphology of Lead(II) and Chromium(III) reaction products on phyllosilicate surfaces as determined by atomic force microscope. Clays and Clay Minerals, 1996, 44(6): 734-743.

[1] 张雪芬,陆现彩,张林晔,刘庆. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604.
[2] 汪齐连,刘丛强,赵志琦,B.Chetelat,丁虎. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958.
[3] 卢龙飞,蔡进功,包于进,李从先,杨守业,范代读. 粘土矿物保存海洋沉积有机质研究进展及其碳循环意义[J]. 地球科学进展, 2006, 21(9): 931-937.
[4] 叶曦雯,刘素美,张经. 生物硅的测定及其生物地球化学意义[J]. 地球科学进展, 2003, 18(3): 420-426.
[5] 杨献忠. 伊利石单元粒子及其研究意义[J]. 地球科学进展, 2002, 17(5): 659-663.
[6] 梁成华,魏丽萍,罗磊. 土壤固钾与释钾机制研究进展[J]. 地球科学进展, 2002, 17(5): 679-684.
阅读次数
全文


摘要