地球科学进展 ›› 1995, Vol. 10 ›› Issue (4): 387 -392. doi: 10.11867/j.issn.1001-8166.1995.04.0387

干旱气候变化与可持续发展 上一篇    下一篇

广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化
沈壬兴 1,上官行健 1,王明星 1,王跃思 1,张文 1,卢巨祥 2,许炳雄 2,傅桂芬 2,李铭珊 2,林子瑜 2   
  1. 1.中国科学院大气物理研究所  北京  100029;2.国家环保局华南环境科学研究所  北京  510655
  • 收稿日期:1994-06-17 修回日期:1994-09-05 出版日期:1995-08-01
  • 通讯作者: 沈壬兴

METHANE EMISSION FROM RICE FIELDS IN GUANGZHOU REGION AND THE SPATIAL VARIATION OF METHANE EMISSION IN CHINA

Shen Renxing 1, Shangguan Xingjian 1, Wang Mingxing 1, Wang Yuesi 1, Zhang Wen 1, Lu Juxiang 2, Xu Binxiong 2, Fu Guifeng 2, Li Mingshan 2, Ling Ziyu 2   

  1. 1.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing  100029; 2.South China Institute for Environmental Sciences, NEPA, Guangzhou  510655
  • Received:1994-06-17 Revised:1994-09-05 Online:1995-08-01 Published:1995-08-01

1993年在广州地区采用中国科学院大气物理研究所研制的自动采集和分析系统测量了稻田甲烷的排放率,首次获得了占我国20~25%左右水稻收获面积的华南地区稻田甲烷排放特征值。从而宏观地使我国五大主要水稻生态区的甲烷排放率都有了实测资料。稻田甲烷排放率的季节变化主要与气温及灌溉水状态的变化有较大关系,日变化规律以下午出现极大为主。本实验田的甲烷排放率低,其特有的耕作制度(稻田冬天闲置及两季稻期间的闲置)可能是重要原因之一;广州地区实际水稻耕作中施用少量甚至不施有机肥也促成该地区比较低的甲烷排放率。在实验中尽量保持当地的常规水管理方式,这样能更准确和实际地反映出稻田甲烷排放率。年平均气温和土壤的有机质含量不足以说明稻田甲烷排放的空间变化规律。广州地区甲烷排放率相对较低,早晚稻的季节平均值分别为0.5±0.6mg/m2•h和0.4±0.4mg/m2•h。根据我国目前已有的各大区域、各种耕作制度的稻田甲烷排放率资料及相应的稻田面积推算出中国总体稻田甲烷排放率为11.1(10.2~12.8)×1012g/a。

Methane emission rate was measured in 1993 using an automatic measuring system built by the Institute of Atmospheric Physics, Chinese Academy of Sciences. Methane emission factor is preliminary available for rice fields in South China region, which takes about 20% of the total rice harvesting area in China. Then the methane emission factors are already available in all the five major rice culture regions in China. The seasonal variation of methane emission rate depends mainly on the variation of air temperature and flooding condition. The afternoon peak mode is dominant for diurnal variation. The methane emission rate form this experiment field is rather low, which may mainly due to the unique cultivation system in Guangzhou that rice fields are normally kept free during winter time and in the gap between early and late rice growing season. The low dosage or even without organic manure may be another important reason. In our experiment the water flooding condition was kept normal as in the local region so that the methane emission factor can represent more properly the real emission value from actual rice paddy fields. Annual mean temperature and soil organic matter are not the factors to explain the spatial variation of methane emission rate from rice fields. The seasonal average of methane emission rate was 0.5±0.6 mg/m2•h. According to the available date set for methane emission rate from various rice fields in China, and relevant area of rice cultivation, total methane emission in Chinese rice paddies can be estimated 11.1(10.2~12.8) ×1012 g/a.

[1] Blake D R and Rowland F S.Continuing world wide increase intropospheric methane. Science,1988,239:4844.
[2] Wang Mingxing,Dai Aiguo,Shen Renxing et al.CH4 emission from a Chinese rice paddy field. Acta Meteorologica Sinica,1990,4(3):265-274.
[3] Wang Mingxing,Shangguan Xingjian,Shen Renxing et al. Methane production,emission and possible control measures in the rice agriculture. Advances in Atmospheric Sciences,1993,10(3):307-314•
[4] 戴爱国,王明星,沈壬兴等.我国杭州地区秋季稻田的甲烷排放.大气科学,1991,15(1):102-110.
[5] 陈德章,王明星,上官行健等.我国西南地区的稻田CH4排放.地球科学进展,1993,8(5):47-54.
[6] 上官行健,王明星,沈壬兴等.我国华中地区稻田甲烷的排放特征.大气科学,1994,8(3):358-365.
[7] 上官行健,王明星,沈壬兴等.稻田CH4的排放规律.地球科学进展,1993,8(5):23-36.
[8] 上官行健.稻田甲烷产生和排放过程的研究.中国科学院大气物理研究所博士论文,1993.

[1] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[2] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[3] 程国栋,肖洪浪,李彩芝,任娟,王赛. 黑河流域节水生态农业与流域水资源集成管理研究领域[J]. 地球科学进展, 2008, 23(7): 661-665.
[4] 李小雁. 流域绿水研究的关键科学问题[J]. 地球科学进展, 2008, 23(7): 707-712.
[5] 程国栋;赵文智. 绿水及其研究进展
[J]. 地球科学进展, 2006, 21(3): 221-228.
[6] 程国栋,赵文智. 绿水及其研究进展[J]. 地球科学进展, 2006, 21(03): 221-227.
[7] 于贵瑞;王秋凤;于振良. 陆地生态系统水—碳耦合循环与过程管理研究[J]. 地球科学进展, 2004, 19(5): 831-839.
[8] 张翠云;张胜;李政红;刘少玉. 利用氮同位素技术识别石家庄市地下水硝酸盐污染源[J]. 地球科学进展, 2004, 19(2): 183-191.
[9] 于心科,李宁,李春园,邵波,王卫东, 谢小立. 温度对稻田甲烷排放的影响[J]. 地球科学进展, 1994, 9(5): 54-56.
[10] 上官行健; 王明星; 陈德章; 沈壬兴. 稻田土壤中的CH4产生[J]. 地球科学进展, 1993, 8(5): 1-12.
[11] 上官行健;王明星;陈德章;沈壬兴. 稻田CH 4的传输[J]. 地球科学进展, 1993, 8(5): 13-22.
[12] 上官行健;王明星;沈壬兴. 稻田CH 4的排放规律[J]. 地球科学进展, 1993, 8(5): 23-36.
[13] 陈德章;王明星;上官行健;黄俊;R.A.Rasmussen;M.K.A.Khalil. 我国西南地区的稻田CH 4排放[J]. 地球科学进展, 1993, 8(5): 47-54.
[14] 上官行健;王明星. 稻田CH 4排放的控制措施[J]. 地球科学进展, 1993, 8(5): 55-62.
[15] 李驾三. 水资源学[J]. 地球科学进展, 1991, 6(6): 72-73.
阅读次数
全文


摘要