Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2019, Vol. 34 Issue (3): 232-242    DOI: 10.11867/j.issn.1001-8166.2019.03.0232
    
Causes of Arctic Amplification: A Review
Fengmin Wu1(),Wenkai Li2,Wei Li2
1. Zhejiang Meteorological Research Institute, Hangzhou 310008, China
2. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download:  HTML  PDF (6433KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pace of Arctic warming is about double that at lower latitudes in the recent decades, a robust phenomenon known as Arctic Amplification (AA), which has become one of the most notable features of climate change. This review summarized the major advances of the mechanism of AA from both local factors and poleward heat transport from lower latitudes. Local factors, including positive ice-albedo feedback and increasing downwelling longwave radiation caused by water vapor and cloud, play an important role in AA. Due to the colder background temperatures and the more stable vertical structure than the lower latitudes, the temperature feedback is therefore positive, which induces the warm signal amplified in the Arctic. The poleward heat transport via atmosphere circulation and ocean currents is also a contributor to AA, and the multidecadal variability in the Pacific, the Atlantic and the tropical Pacific surface temperature are the dominant forcing of the atmosphere circulation. Finally, several issues that remain to be solved were proposed.

Key words:  Arctic amplification      Climate feedback      Poleward heat transport      Sea temperature regulating.     
Received:  02 December 2018      Published:  28 April 2019
ZTFLH:  P467  
  P731.15  
About author:  Wu Fengmin(1986-), male, Feicheng County, Shandong Province, Engineer. Research areas include the driving mechanisms and influences of Arctic climate change. E-mail:fmwu_zjqks@163.com|Wu Fengmin(1986-), male, Feicheng County, Shandong Province, Engineer. Research areas include the driving mechanisms and influences of Arctic climate change. E-mail:fmwu_zjqks@163.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Fengmin Wu
Wenkai Li
Wei Li

Cite this article: 

Fengmin Wu,Wenkai Li,Wei Li. Causes of Arctic Amplification: A Review. Advances in Earth Science, 2019, 34(3): 232-242.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2019.03.0232     OR     http://www.adearth.ac.cn/EN/Y2019/V34/I3/232

Fig. 1  Linear trends of monthly mean Arctic 2 m air temperature over 1979-2018
Fig. 2   Case study of an intrusion event beginning over northern Norway at 1800 UTC on 27 December 1999
Fig. 3   Composite anomalies of Arctic mean LSAT (in degrees Celsius) as a function of the normalized PDV and AMV indices, based on 37 CMIP5 preindustrial control simulations
Fig. 4  Driving mechanisms of the Arctic amplification
作者 研究方法 主要结论
Langen等[79] 数值模拟 温度反馈是北极放大的主要原因,水汽反馈不能导致北极放大,但会增加气候敏感性
Taylor等[19] 数值模拟 最大贡献项是反照率反馈,其次是云反馈,再次是大气传输作用
Pithan等[21] CMIP5模式评估 温度反馈贡献最大,其次是反照率反馈
Graversen等[16] 数值模拟 表面反照率反馈的贡献约40 % ,温度递减率反馈的贡献约15 %
Park等[77] 数值模拟 热带强迫对北极放大的分布型有最大贡献,而北极放大的程度主要由局地强迫决定
Dai等[17] 统计和CMIP5模式评估 海冰快速融化是最关键因素,其他物理过程要通过融化海冰间接影响北极放大
Table 1  Several conclusions on the relative contribution of different driving mechanisms to Arctic amplification
1 Screen J A , Simmonds I . The central role of diminishing sea ice in recent Arctic temperature amplification [J]. Nature, 2010, 464 (7 293): 1 334-1 337.
2 Serreze M C , Barry R G . Processes and impacts of Arctic amplification: A research synthesis [J]. Global and Planetary Change, 2011, 77: 85-96.
3 Cullather R I , Y-K Lim , Boisvert L N , et al . Analysis of the warmest Arctic winter, 2015-2016 [J]. Geophysical Research Letters, 2016, 43: 10 808-10 816.
4 Kinnard C , Zdanowicz C M , Fisher D A , et al . Reconstructed changes in Arctic sea ice over the past 1,450 years [J]. Nature, 2011, 479 (7 374): 509-512.
5 Kwok R , Rothrock D A . Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008 [J]. Geophysical Research Letters, 2009: L15501. DOI:.
doi: 10.1029/2009GL039035
6 Bushuk T , Hudson S R , Granskog M A , et al . Spectral albedo and transmittance of thin young Arctic sea ice [J]. Journal of Geophysical Research: Oceans, 2016, 121 (1): 540-553.
7 Lenton T M , Held H , Kriegler E , et al . Tipping elements in the Earth's climate system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (6): 1 786-1 793.
8 Ma S , Zhu C , Liu B , et al . Polarized response of East Asian winter temperature extremes in the Era of Arctic warming [J]. Journal of Climate, 2018, 31 (14): 5 543-5 557.
9 Kug J S , Jeong J H , Jang Y S , et al . Two distinct influences of Arctic warming on cold winters over North America and East Asia [J]. Nature Geoscience, 2015, 8 (10): 759-762.
10 Wu Z , Li X , Li Y , et al . Potential influence of Arctic Sea Ice to the interannual variations of East Asian spring precipitation [J]. Journal of Climate, 2016, 29 (8): 2 797-2 813.
11 Wu B , Zhang R , Wang B , et al . On the association between spring Arctic sea ice concentration and Chinese summer rainfall [J]. Geophysical Research Letters, 2009, 36: L09501. DOI:.
doi: 10.1029/2009GL037299
12 Liu J , Curry J A , Wang H , et al . Impact of declining Arctic sea ice on winter snowfall [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (11): 4 074-4 079.
13 Oudar T , Sanchez-Gomez E , Chauvin F , et al . Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation [J]. Climate Dynamics, 2017, 49 (11/12): 3 693-3 713.
14 Coumou D , Di Capua G , Vavrus S , et al . The influence of Arctic amplification on mid-latitude summer circulation [J]. Nature Communications, 2018, 9 (1). DOI:.
doi: 10.1038/s41467-018-05256-8
15 Screen J A , Simmonds I . Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification [J]. Geophysical Research Letters, 2010, 37 (16). DOI:.
doi: 10.1029/2010gl044136
16 Graversen R G , Langen P L , Mauritsen T . Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks [J]. Journal of Climate, 2014, 27 (12): 4 433-4 450.
17 Dai A , Luo D , Song M , et al . Arctic amplification is caused by sea-ice loss under increasing CO2 [J]. Nature Communications, 2019. DOI:.
doi: 10.1038/s41467-018-07954-9
18 Yim B Y , Min H S , Kim B M , et al . Sensitivity of Arctic warming to sea ice concentration [J]. Journal of Geophysical Research: Atmospheres, 2016, 121 (12): 6 927-6 942.
19 Taylor P C , Cai M , Hu A , et al . A decomposition of feedback contributions to polar warming amplification [J]. Journal of Climate, 2013, 26 (18): 7 023-7 043.
20 Graversen R G , Wang M . Polar amplification in a coupled climate model with locked albedo [J]. Climate Dynamics, 2009, 33: 629-643.
21 Pithan F , Mauritsen T . Arctic amplification dominated by temperature feedbacks in contemporary climate models [J]. Nature Geoscience, 2014, 7 (3): 181-184.
22 M-L Kapsch , Graversen R G , Tjernstr?m M . Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent [J]. Nature Climate Change, 2013, 3 (8): 744-748.
23 Ding Q , Wallace J M , Battisti D S , et al . Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland [J]. Nature, 2014, 509 (7 499): 209-212.
24 Messori G , Woods C , Caballero R . On the drivers of wintertime temperature extremes in the high Arctic [J]. Journal of Climate, 2018, 31 (4): 1 597-1 618.
25 Polyakov I V , Pnyushkov A V , Alkire M B , et al . Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean [J]. Science, 2017, 356 (6 335): 285-291.
26 Zhou Tianjun , Chen Xiaolong . The uncertainty in the 2 °C warming threshold issue as related to climate sensitivity and climate feedback [J]. Acta Meteorologica Sinica, 2015, 73 (4): 624-634.
26 周天军,陈晓龙 . 气候敏感度、气候反馈过程与2°C升温阈值的不确定性问题[J]. 气象学报,2015, 73(4): 624-634.
27 Perovich D K . Complex yet translucent: The optical properties of sea ice [J]. Physica B: Condensed Matter, 2003, 338 (1/4): 107-114.
28 Bushuk M , Msadek R , Winton M , et al . Summer enhancement of Arctic Sea ice volume anomalies in the september-ice zone [J]. Journal of Climate, 2017, 30: 2 341-2 362.
29 Wu Fengmin , He Jinhai , Qi Li , et al . The seasonal difference of Arctic warming and it’s mechanism under sea ice cover diminishing [J]. Acta Oceanologica Sinica, 2014, 36 (3): 39-47.
29 武丰民, 何金海,祁莉,等 . 海冰消融背景下北极增温的季节差异及其原因探讨[J]. 海洋学报, 2014, 36 (3): 39-47.
30 Cao Yunfeng , Liang Shunlin . Recent advances in driving mechanisms of the Arctic amplification: A review [J]. Chinese Science Bulletin, 2018, 63(26): 2 757-2 774.
30 曹云锋,梁顺林 . 北极地区快速升温的驱动机制研究进展[J]. 科学通报,2018, 63(26): 2 757-2 774.
31 La?né A , Yoshimori M , Abe-Ouchi . A surface Arctic amplification factors in CMIP5 Models: Land and oceanic surfaces and seasonality [J]. Journal of Climate, 2016, 29 (9): 3 297-3 316.
32 Hu C , Yang S , Wu Q , et al . Shifting El Ni?o inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin [J]. Nature Communications, 2016, 7: 11 721.
33 Bushuk M , Msadek R , Winton M , et al . Skillful regional prediction of Arctic sea ice on seasonal timescales [J]. Geophysical Research Letters, 2017, 44: 4 953-4 964. DOI:.
doi: 10.1002/2017GL073155
34 Lang A , Yang S , Kaas E . Sea ice thickness and recent Arctic warming [J]. Geophysical Research Letters, 2017, 44:409-418. DOI: .
doi: 10.1002/2016GL071274
35 Sheng Peixuan , Mao Jietai , Li Jianguo , et al . Physics of the Atmosphere [M]. Beijing: Peking University Press, 2003.
35 盛裴轩,毛节泰,李建国,等 . 大气物理学[M]. 北京:北京大学出版社,2003.
36 Sejas S A , Cai M . Isolating the temperature feedback loop and its effects on surface temperature [J]. Journal of the Atmospheric Sciences, 2016, 73 (8): 3 287-3 303.
37 Hu Xiaoming , Cai Ming , Yang Song , et al . Air temperature feedback and its contribution to global warming [J]. Science in China (Series D), 2018,61(10):1 491-1 509.
37 胡晓明, 蔡鸣, 杨崧, 等 . 大气温度反馈的机理及其对全球增暖的贡献[J]. 中国科学:D辑, 2019,49(2):468-486.
38 Cao Y , Liang S , Chen X , et al . Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting [J]. Scientific Reports, 2017, 7(1): 8 462.
39 M-L Kapsch , Graversen R G , Tjernstr?m M , et al . The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice [J]. Journal of Climate, 2016, 29 (3): 1 143-1 159.
40 Woods C , Caballero R . The role of moist intrusions in winter arctic warming and sea ice decline [J]. Journal of Climate, 2016, 29 (12): 4 473-4 485.
41 Vázquez M , Nieto R , Drumond A , et al . Extreme sea ice loss over the Arctic: An analysis based on anomalous moisture transport [J]. Atmosphere, 2017, 8 (12): 32.
42 Wang Cen , Ren Baohua , Zheng Jianqiu , et al . Mechanism analysis of the sudden Arctic surface warming on 29 December 2015 [J]. Chinese Journal of Atmospheric Sciences, 2017, 41 (6): 1 343-1 351.
42 王岑, 任保华, 郑建秋, 等 . 2015年12月29日北极地面爆发性增温的成因分析[J]. 大气科学, 2017, 41 (6): 1 343-1 351.
43 Gong T , Feldstein S , Lee S . The role of downward infrared radiation in the recent arctic winter warming trend [J]. Journal of Climate, 2017, 30 (13): 4 937-4 949.
44 Mortin J , Svensson G , Graversen R G , et al . Melt onset over Arctic sea ice controlled by atmospheric moisture transport [J]. Geophysical Research Letters, 2016, 43: 6 636-6 642. DOI:.
doi: 10.1002/2016GL069330
45 Liu Y , Key J R . Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum [J]. Environmental Research Letters, 2014, 9 (4): 044002.
46 Ding Q , Schweiger A , L’Heureux M , et al . Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice [J]. Nature Climate Change, 2017, 7: 289-295.
47 Park D-S R , Lee S , Feldstein S B . Attribution of the recent winter sea ice decline over the atlantic sector of the Arctic Ocean [J]. Journal of Climate, 2015, 28 (10): 4 027-4 033.
48 Overland J E , Wang M . Recent extreme arctic temperatures are due to a split polar vortex [J]. Journal of Climate, 2016, 29 (15): 5 609-5 616.
49 Feng C , Wu B . Enhancement of winter arctic warming by the siberian high over the past decade [J]. Atmospheric and Oceanic Science Letters, 2015, 8(5): 257-263.
50 Gong Daoyi , Zhou Tianjun , Wang Shaowu . Advance in the studies on North Atlantic Oscillation (NAO) [J]. Advances in Earth Science, 2001, 16(3): 413-420.
50 龚道溢,周天军,王绍武 . 北大西洋变率研究进展[J]. 地球科学进展, 2001, 16(3): 413-420.
51 Thompson D W J , Wallace J M . The Arctic oscillation signature in the wintertime geopotential height and temperature fields [J]. Geophysical Research Letters, 1998, 25 (9): 1 297-1 300.
52 Park H S , Stewart A , Son J H . Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent [J]. Journal of Climate, 2017, 31 (4): 1 483-1 497.
53 Ogi M , Rysgaard S , Barber D G . Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent [J]. Environmental Research Letters, 2016, 11 (3): 034019.
54 Zhang X , Sorteberg A , Zhang J , et al . Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system [J]. Geophysical Research Letters, 2008, 35: L22701. DOI: .
doi: 10.1029/2008GL035607
55 Zhao J , Barber D , Zhang S , et al . Record low sea-ice concentration in the central Arctic during summer 2010 [J]. Advances in Atmospheric Sciences, 2017, 35 (1): 106-115.
56 Wu B , Wang J , Walsh J E . Dipole anomaly in the winter arctic atmosphere and its association with sea ice motion [J]. Journal of Climate, 2006, 19 (2): 210-225.
57 Ikeda M . Sea-ice cover anomalies in the Arctic Basin associated with atmospheric variability from multi-decadal trends to intermittent quasibiennial oscillations [J]. Polar Research, 2012, 31 (1): 18 690. DOI: .
doi: 10.3402/polar.v31i0.18690
58 Wu B , Overland J E , D'Arrigo R . Anomalous Arctic surface wind patterns and their impacts on september sea ice minima and trend [J]. Tellus A: Dynamic Meteorology and Oceanography, 2012, 64 (1): 18 590.
59 Zhang R . Mechanisms for low-frequency variability of summer Arctic sea ice extent [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (15): 4 570-4 575.
60 Spielhagen R F , Werner K , Sorensen S A , et al . Enhanced modern heat transfer to the Arctic by warm Atlantic water [J]. Science, 2011, 331 (6 016): 450-453.
61 Zhou Tianjun . Adjustment of the north Atlantic thermohaline circulation to the atmospheric forcing in a global air-sea coupled model [J]. Acta Meteorologica Sinica, 2003, 61(2): 164-180.
61 周天军 . 全球海气耦合模式中热盐环流对大气强迫的响应 [J]. 气象学报,2003,61(2): 164-180.
62 Chen X , K-K Tung . Global surface warming enhanced by weak Atlantic overturning circulation [J]. Nature, 2018, 559 (7 714): 397-391.
63 Rahmstorf S , Box J E , Feulner G , et al . Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation [J]. Nature Climate Change, 2015, 5 (5): 475-480.
64 Yang Xiuqun , Zhu Yimin , Xie Qian , et al . Advances in studies of Pacific decadal oscillation [J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 979-992.
64 杨修群,朱益民,谢倩,等 . 太平洋年代际振荡的研究进展 [J]. 大气科学,2004, 28 (6): 979-992.
65 Kerr R A . A North Atlantic climate pacemaker for the centuries [J]. Science, 2000, 288 (5 473): 1 984-1 986.
66 Tokinaga H , Xie S , Mukougawa H . Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 114 (24): 6 227-6 232.
67 Suo L , Otter? O H , Bentsen M , et al . External forcing of the early 20th century Arctic warming [J]. Tellus A: Dynamic Meteorology and Oceanography, 2013, 65: 20 578.
68 Svendsen L , Keenlyside N , Bethke I , et al . Pacific contribution to the early twentieth-century warming in the Arctic [J]. Nature Climate Change, 2018, 8 (9): 793-797.
69 Myhre G , Shindell D , Bréon F M , et al . Anthropogenic and natural radiative forcing [M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013.
70 Vaughan D , Comiso J , Allison J . et al . Observations: Cryosphere [M]// Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013.
71 Praetorius S , Rugenstein M , Persad G , et al . Global and Arctic climate sensitivity enhanced by changes in North Pacific heat flux [J]. Nature Communications, 2018,9(1):3 124.
72 Zhou T , Turner A G , Kinter J L , et al . GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project [J]. Geoscientific Model Development, 2016, 9(10): 3 589-3 604.
73 Kosaka Y , Xie S . Recent global-warming hiatus tied to equatorial Pacific surface cooling [J]. Nature, 2013, 501 (7 467): 403.
74 Kosaka Y , Xie S . The tropical Pacific as a key pacemaker of the variable rates of global warming [J]. Nature Geoscience, 2016, 9 (9): 669-673.
75 Wu B . Winter atmospheric circulation anomaly associated with recent arctic winter warm anomalies [J]. Journal of Climate, 2017, 30 (21): 8 469- 8479.
76 Graversen R G , Mauritsen T , Tjernstrom M , et al . Vertical structure of recent Arctic warming [J]. Nature, 2008, 451(7 174): 53-56.
77 Park K , Kang S M , Kim D , et al . Contrasting local and remote impacts of surface heating on polar warming and amplification [J]. Journal of Climate, 2018, 31 (8): 3 155-3 166.
78 Screen J A , Francis J A . Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability [J]. Nature Climate Change, 2016, 6 (9): 856-860.
79 Langen P L , Graversen R G , Mauritsen T . Separation of contributions from radiative feedbacks to polar amplification on an Aquaplanet [J]. Journal of Climate, 2012, 25 (8): 3 010-3 024.
80 Perlwitz J , Hoerling M , Dole R . Arctic tropospheric warming: Causes and linkages to lower latitudes [J]. Journal of Climate, 2015, 28 (6): 2 154-2 167.
No Suggested Reading articles found!