Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2019, Vol. 34 Issue (3): 243-254    DOI: 10.11867/j.issn.1001-8166.2019.03.0243
    
Review of the Tropical Gyre in the Indian Ocean with Its Impact on Heat and Salt Transport and Regional Climate Modes
Yan Du1,2(),Lianyi Zhang1,2,Yuhong Zhang1
1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
2. University of Chinese Academy of Sciences, Beijing 100049,China
Download:  HTML  PDF (2978KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the IO monsoon impact, the tropical IO circulation has significant seasonal variation, especially in the northern IO. However, in mean-state, a relatively closed current loop is established by eastward current along the equator and westward current south of equator, which is regarded as Tropical Gyre in the Indian Ocean. Based on this circulation system, relevant studies were reviewed. Its impact on heat and salt transports and regional climate changes were discussed.

Key words:  Indian Ocean      Tropical gyre      Heat and salt transport      Climate Modes.     
Received:  27 December 2018      Published:  28 April 2019
ZTFLH:  P371.27  
Fund: Project supported by the National Natural Science Foundation of China “The low-frequency variability of southern tropical Indian Ocean circulation and its impact on heat and salt transport and climate modes”(No. 41830538);The National Science Fund for Distinguished Young Scholars "Physical Oceanography"(No. 41525019)
About author:  Du Yan(1975-), male, Linyi City, Shandong Province, Professor. Research areas include ocean circulation and ocean-atmosphere interaction. E-mail:duyan@scsio.ac.cn|Du Yan(1975-), male, Linyi City, Shandong Province, Professor. Research areas include ocean circulation and ocean-atmosphere interaction. E-mail:duyan@scsio.ac.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Yan Du
Lianyi Zhang
Yuhong Zhang

Cite this article: 

Yan Du,Lianyi Zhang,Yuhong Zhang. Review of the Tropical Gyre in the Indian Ocean with Its Impact on Heat and Salt Transport and Regional Climate Modes. Advances in Earth Science, 2019, 34(3): 243-254.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2019.03.0243     OR     http://www.adearth.ac.cn/EN/Y2019/V34/I3/243

Fig.1  Trajectory of a surface drifter (ID: 9217260) to indicate the Tropical Gyre in the Indian Ocean
Fig.2  Climatologic state of sea surface salinity (shading based on Argo gridded data) and surface current (vector based on Ocean Surface Current Analyses- Real Time data (OSCAR)) in the tropical Indian Ocean
Fig.2  Climatologic state of sea surface temperature (shading based on Optimum Interpolation Sea Surface Temperature data, OISST) and surface wind (vector based on the Cross-Calibrated Multi-Platform wind dat(CCMP)) in the tropical Indian Ocean
Fig.4  First two modes of the tropical Indian Ocean sea surface temperature derived by Empirical Orthogonal Function(EOF) method
Fig.5  Low-frequency variability of IOD and its relationship with thermocline over the southeastern tropical Indian Ocean (Based on Simple Ocean Data Assimilation data(SODA) modified after reference [97])
Fig.6  Schematic diagram of the Tropical Gyre in the Indian Ocean
1 LiChongyin. Recent developments on Asian Monsoon climate [J]. Journal of Tropical Meteorology, 1988, 4(3): 203-215.
1 李崇银. 亚洲季风气候若干问题研究近况 [J]. 热带气象, 1988, 4(3): 203-215.
2 LiJianping, WuGuoxiong, HuDunxin. Ocean-Atmospere in the Indo-Pacific Region and Its Impact on Short-term Climate in China [M]. Beijng: China Meteorological Press, 2011.
2 李建平, 吴国雄, 胡敦欣. 亚印太交汇区海气相互作用及其对我国短期气候的影响 [M]. 北京:气象出版社, 2011.
3 LiuQinyu, XieShangping, ZhengXiaotong. Tropical Ocean-Atmosphere Interaction [M]. Beijng: Higher Education Press, 2013.
3 刘秦玉, 谢尚平, 郑小童. 热带海洋—大气相互作用 [M]. 北京:高等教育出版社, 2013.
4 WuGuoxiong, LiJianping, ZhouTianjun, et al. The key region affecting the short-term climate variations in China: The joining area of Asia and Indian-Pacific Ocean [J]. Advances in Earth Science, 2006, 21(11): 1 109-1 118.
4 吴国雄, 李建平, 周天军, 等. 影响我国短期气候异常的关键区: 亚印太交汇区 [J]. 地球科学进展, 2006, 21(11): 1 109-1 118.
5 SchottF A, McCrearyJ P. The monsoon circulation of the Indian Ocean [J]. Progress in Oceanography, 2001, 51(1): 1-123.
6 SchottF A, XieS P, McCrearyJ P. Indian Ocean circulation and climate variability [J]. Reviews of Geophysics, 2009, 47(1). DOI: .
doi: 10.1029/2007RG000245
7 FengM, WijffelsS. Intraseasonal variability in the south equatorial current of the east Indian Ocean [J]. Journal of Physical Oceanography, 2002, 32(1): 265-277.
8 LuytenJ, RoemmichD. Equatorial currents at semi-annual period in the Indian Ocean [J]. Journal of Physical Oceanography, 1982, 12(5): 406-413.
9 McPhadenM J. The equatorial undercurrent: 100 years of discovery [J]. Eos, Trans Amer Geophys Union, 1986, 67(40): 762-765.
10 ChenG, HanW, LiY, et al. Seasonal-to-Interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean [J]. Journal of Physical Oceanography, 2015, 45(6): 1 532-1 553.
11 KnaussJ A, TaftB A. Equatorial undercurrent of the Indian Ocean [J]. Science, 1964, 143(3 604): 354-356.
12 McPhadenM J, WangY, RavichandranM. Volume transports of the Wyrtki jets and their relationship to the Indian Ocean Dipole [J]. Journal of Geophysical Research: Oceans, 2015, 120(8): 5 302-5 317.
13 NaguraM, McPhadenM J. Wyrtki Jet dynamics: Seasonal variability [J]. Journal of Geophysical Research, 2010, 115(C7). DOI: .
doi: 10.1029/2009JC005922
14 WyrtkiK. An equatorial jet in the Indian Ocean [J]. Science, 1973, 181(4 096): 262-264.
15 ChenG X, HanW Q, ShuY Q, et al. The role of Equatorial undercurrent in sustaining the Eastern Indian Ocean upwelling [J]. Geophysical Research Letters, 2016, 43(12): 6 444-6 451.
16 DuYan, FangGuohong. Progress on the study of the Indonesian Seas and Indonesian Throughflow [J]. Advances in Earth Science, 2011, 26(11): 1 131-1 142.
16 杜岩,方国洪.印度尼西亚海与印度尼西亚贯穿流研究概述[J].地球科学进展,2011,26(11):1 131-1 142.
17 DuY, QuT. Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation [J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 233-256.
18 FengM, BenthuysenJ, ZhangN N, et al. Freshening anomalies in the Indonesian throughflow and impacts on the Leeuwin Current during 2010-2011 [J]. Geophysical Research Letters, 2015, 42(20): 8 555-8 562.
19 GordonA L, MaS B, OlsonD B, et al. Advection and diffusion of Indonesian throughflow water within the Indian Ocean South Equatorial Current [J]. Geophysical Research Letters, 1997, 24(21): 2 573-2 576.
20 GordonA L, SusantoR D, VranesK. Cool Indonesian throughflow as a consequence of restricted surface layer flow [J]. Nature, 2003, 425(6 960): 824-828.
21 SongQ, GordonA L. Significance of the vertical profile of the Indonesian Throughflow transport to the Indian Ocean [J]. Geophysical Research Letters, 2004, 31(16). DOI: .
doi: 10.1029/2004 GL020360
22 WajsowiczR C, SchneiderE K. The Indonesian throughflow's effect on global climate determined from the COLA coupled climate system [J]. Journal of Climate, 2001, 14(13): 3 029-3 042.
23 YuanD L, WangJ, XuT, et al. Forcing of the Indian Ocean Dipole on the interannual variations of the Tropical Pacific Ocean: Roles of the Indonesian Throughflow [J]. Journal of Climate, 2011, 24(14): 3 593-3 608.
24 YamagamiY, TozukaT. Interannual variability of South Equatorial Current bifurcation and western boundary currents along the Madagascar coast [J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8 551-8 570.
25 BealL M, HormannV, LumpkinR, et al. The response of the surface circulation of the Arabian Sea to monsoonal forcing [J]. Journal of Physical Oceanography, 2013, 43(9): 2 008-2 022.
26 FriedrichSchott. Monsoon response of the Somali Current and associated upwelling [J]. Progress in Oceanography, 1983, 12(3): 357-381.
27 ShankarD, VinayachandranP N, UnnikrishnanA S. The monsoon currents in the north Indian Ocean [J]. Progress in Oceanography, 2002, 52(1): 63-120.
28 RickLumpkin, JohnsonG C. Global ocean surface velocities from drifters: Mean, variance, El Ni?o-Southern Oscillation response, and seasonal cycle [J]. Journal of Geophysical Research: Oceans, 2013, 118(6): 2 992-3 006.
29 SajiN H, YamagataT. Possible impacts of Indian Ocean Dipole mode events on global climate [J]. Climate Research, 2003, 25(2): 151-169.
30 DeserC, AlexanderM A, XieS P, et al. Sea surface temperature variability: Patterns and mechanisms [J]. Annual Review of Marine Science, 2010, (2):115-143.
31 XieS P, DeserC, VecchiG A, et al. Global warming pattern formation: Sea surface temperature and rainfall [J]. Journal of Climate, 2010, 23(4): 966-986.
32 AbramN J, GaganM K, ColeJ E, et al. Recent intensification of tropical climate variability in the Indian Ocean [J]. Nature Geoscience, 2008, 1(12): 849-853.
33 AllanR J, LindesayJ A, ReasonC J C. Multidecadal variability in the climate system over the Indian-Ocean region during the Austral Summer [J]. Journal of Climate, 1995, 8(7): 1 853-1 873.
34 AnnamalaiH, PotemraJ, MurtuguddeR, et al. Effect of preconditioning on the extreme climate events in the tropical Indian Ocean [J]. Journal of Climate, 2005, 18(17): 3 450-3 469.
35 LuoJ J, SasakiW, MasumotoY. Indian Ocean warming modulates Pacific climate change [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(46): 18 701-18 706.
36 TokinagaH, XieS P, TimmermannA, et al. Regional patterns of Tropical Indo-Pacific climate change: Evidence of the walker circulation weakening [J]. Journal of Climate, 2012, 25(5): 1 689-1 710.
37 XieS P, HuK M, HafnerJ, et al. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Ni?o [J]. Journal of Climate, 2009, 22(3): 730-747.
38 SajiN H, GoswamiB N, VinayachandranP N, et al. A dipole mode in the tropical Indian Ocean [J]. Nature, 1999, (401):360-363.
39 ShenoiS S C, SajiP K, AlmeidaA M. Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from Lagrangian drifters [J]. Journal of Marine Research, 1999, 57(6): 885-907.
40 VinayachandranP N, SajiN H, ToshioYamagata. Response of the equatorial Indian Ocean to an unusual wind event during 1994 [J]. Geophysical Research Letters, 1999, 26(11): 1 613-1 616.
41 ChenZ H, WuL X, QiuB, et al. Seasonal variation of the South Equatorial Current Bifurcation off Madagascar [J]. Journal of Physical Oceanography, 2014, 44(2): 618-631.
42 QiuY, CaiW, GuoX, et al. The asymmetric influence of the positive and negative IOD events on China's rainfall [J]. Scientific Reports, 2014, (4):4 943.
43 HanW Q, VialardJ, McPhadenM J, et al. Indian Ocean decadal variability: A review [J]. Bulletin of the American Meteorological Society, 2014, 95(11): 1 679-1 703.
44 Aguiar-GonzalezB, PonsoniL, RidderinkhofH, et al. Seasonal variation of the South Indian tropical gyre [J]. Deep-Sea Research Part I:Oceanographic Research Papers, 2016, 110:123-140.
45 DonguyJ R, MeyersG. Observations of geostrophic transport variability in the Western Tropical Indian-Ocean [J]. Deep-Sea Research Part I:Oceanographic Research Papers, 1995, 42(6): 1 007-1 028.
46 HanW Q, McCrearyJ P, AndersonD L T, et al. Dynamics of the eastern surface jets in the equatorial Indian Ocean [J]. Journal of Physical Oceanography, 1999, 29(9): 2 191-2 209.
47 MotokiNagura, Mcphaden MichaelJ. The dynamics of zonal current variations in the Central Equatorial Indian Ocean [J]. Geophysical Research Letters, 2008, 35(23): 186-203.
48 TomomichiOgata, XieS P. Semiannual cycle in zonal wind over the Equatorial Indian Ocean [J]. Journal of Climate, 2010, 24(24): 6 471-6 485.
49 YuanD L, HanW Q. Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean [J]. Journal of Physical Oceanography, 2006, 36(5): 930-944.
50 PengS Q, QianY K, LumpkinR, et al. Characteristics of the near-surface currents in the Indian Ocean as deduced from satellite-tracked surface drifters. Part I: Pseudo-Eulerian statistics [J]. Journal of Physical Oceanography, 2015, 45(2): 441-458.
51 PengS Q, QianY K, LumpkinR, et al. Characteristics of the near-surface currents in the Indian Ocean as deduced from satellite-tracked surface drifters. Part II: Lagrangian statistics [J]. Journal of Physical Oceanography, 2015, 45(2): 459-477.
52 QiuY, LiL, YuW D. Behavior of the Wyrtki Jet observed with surface drifting buoys and satellite altimeter [J]. Geophysical Research Letters, 2009, 36(18).DOI: .
doi: 10.1029/2009GL039120
53 O'BrienJ J, HurlburtH E. Equatorial jet in the Indian ocean: Theory [J]. Science, 1974, 184(4 141): 1 075-1 077.
54 DuanY L, LiuL, HanG Q, et al. Anomalous behaviors of Wyrtki Jets in the equatorial Indian Ocean during 2013 [J]. Scientific Reports, 2016, (6):29 688.
55 HanW Q, McCrearyJ P. Modeling salinity distributions in the Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2001, 106(C1): 859-877.
56 JensenT G. Cross-equatorial pathways of salt and tracers from the northern Indian Ocean: Modelling results [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(12/13): 2 111-2 127.
57 McCrearyJ P, KunduP K, MolinariR L. A numerical unvestigation of dynamics, thermodynamics and Mixed-Layer Processes in the Indian-Ocean [J]. Progress in Oceanography, 1993, 31(3): 181-244.
58 KuswardaniR T D, QiaoF L. Influence of the Indonesian Throughflow on the upwelling off the east coast of South Java [J]. Chinese Science Bulletin, 2014, 59(33): 4 516-4 523.
59 SchillerA, WijffelsS E, SprintallJ, et al. Pathways of intraseasonal variability in the Indonesian Throughflow region [J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 174-200.
60 ZhangY, FengM, DuY, et al. Strengthened indonesian throughflow drives decadal warming in the Southern Indian Ocean [J]. Geophysical Research Letters, 2018. DOI: .
doi: 10.1029/2018GL078265
61 SchoutenM W, de RuijterW P M, van LeeuwenP J, et al. An oceanic teleconnection between the equatorial and southern Indian Ocean [J]. Geophysical Research Letters, 2002, 29(16): 59-1-59-4.
62 XieS P, AnnamalaiH, SchottF A, et al. Structure and mechanisms of South Indian Ocean climate variability [J]. Journal of Climate, 2002, 15(8): 864-878.
63 ZhangLianyi, DuYan, ZhengShaojun, et al. Subtropical surface circulation in the southern Indian Ocean derived from surface drifters [J]. Chinese Science Bulletin, 2016, 61(33): 3 596-3 605.
63 张涟漪,杜岩,郑少军,等.南印度洋表层副热带环流的漂流示踪[J].科学通报,2016,61(33):3 596-3 605.
64 SchottF A, MccrearyJ P, JohnsonG C. Shallow overturning circulations of the tropical-subtropical oceans[J]. Earth Climate: The Ocean-Atmosphere Interaction, Geophysical Monograph, 2004, 147: 261-304.
65 MiyamaT, McCrearyJ P, JensenT G, et al. Structure and dynamics of the Indian-Ocean cross-equatorial cell [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(12/13): 2 023-2 047.
66 LeeT. Decadal weakening of the shallow overturning circulation in the South Indian Ocean [J]. Geophysical Research Letters, 2004, 31(18). DOI:
doi: 10.1029/2004GL020884
67 WijffelsS, SprintallJ, FieuxM, et al. The JADE and WOCE I10/IR6 throughflow sections in the southeast Indian Ocean. Part 1: Water mass distribution and variability [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(7/8): 1 341-1 362.
68 ZhangY H, DuY, QuT D. A sea surface salinity dipole mode in the tropical Indian Ocean [J]. Climate Dynamics, 2016, 47(7/8): 2 573-2 585.
69 PhillipsH E, WijffelsS E, FengM. Interannual variability in the freshwater content of the Indonesian-Australian Basin [J]. Geophysical Research Letters, 2005, 32(3).DOI: .
doi: 10.1029/2004GL021755
70 HuS J, SprintallJ. Interannual variability of the Indonesian Throughflow: The salinity effect [J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2 596-2 615.
71 LiuQin-Yan, FengM, WangD X, et al. Interannual variability of the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data [J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8 270-8 282.
72 ZhangY H, DuY, FengM. Multiple time scale variability of the Sea Surface Salinity Dipole Mode in the Tropical Indian Ocean [J]. Journal of Climate, 2018, 31(1): 283-296.
73 WuL J, WangF, YuanD L, et al. Evolution of freshwater plumes and salinity fronts in the northern Bay of Bengal [J]. Journal of Geophysical Research, 2007, 112(C8). DOI: .
doi: 10.1029/2005JC003308
74 RaoR R, SivakumarR. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2003, 108(C1). DOI: .
doi: 10.1029/2001jc000907
75 ZhangY H, DuY. Seasonal variability of salinity budget and water exchange in the northern Indian Ocean from HYCOM assimilation [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(6): 1 082-1 092.
76 ThompsonB, GnanaseelanC, SalvekarP S. Variability in the Indian Ocean circulation and salinity and its impact on SST anomalies during dipole events [J]. Journal of Marine Research, 2006, 64(6): 853-880.
77 VinayachandranN, Nanjundiah RaviS. Indian Ocean sea surface salinity variations in a coupled model [J]. Climate Dynamics, 2009, 33(2/3): 245-263.
78 GrunseichG, SubrahmanyamB, MurtyV S N, et al. Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2011, 116. DOI: .
doi: 10.1029/2011JC007456
79 ZhangY H, DuY, ZhengS J, et al. Impact of Indian Ocean Dipole on the salinity budget in the equatorial Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 4 911-4 923.
80 DuY, ZhangY H. Satellite and Argo observed surface salinity variations in the Tropical Indian Ocean and their association with the Indian Ocean Dipole Mode [J]. Journal of Climate, 2015, 28(2): 695-713.
81 DuY, XieS P, HuangG, et al. Role of air-sea interaction in the long persistence of El Ni?o-Induced North Indian Ocean warming [J]. Journal of Climate, 2009, 22(8): 2 023-2 038.
82 SajiN H., GoswamiB N, VinayachandranP N, et al. A dipole mode in the tropical Indian Ocean [J]. Nature, 1999, 401 (6 751): 360-363.
83 YangJ L, LiuQ Y, XieS P, et al. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon [J]. Geophysical Research Letters, 2007, 34(2).DOI: .
doi: 10.1029/2006GL 028571
84 XieS P, KosakaY, DuY, et al. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review [J]. Advances in Atmospheric Sciences, 2016, 33(4): 411-432.
85 DuY, YangL, XieS P. Tropical Indian Ocean influence on Northwest Pacific Tropical Cyclones in summer following strong El Ni?o [J]. Journal of Climate, 2011, 24(1): 315-322.
86 XieS P, DuY, HuangG, et al. Decadal shift in El Ni?o influences on Indo-Western Pacific and East Asian climate in the 1970s [J]. Journal of Climate, 2010, 23(12): 33 52-3 368.
87 ChowdaryJ S, XieS P, TokinagaH, et al. Interdecadal variations in ENSO teleconnection to the Indo-Western Pacific for 1870-2007 [J]. Journal of Climate, 2012, 25(5): 1 722-1 744.
88 BeheraS K, KrishnanR, YamagataT. Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994 [J]. Geophysical Research Letters, 1999, 26(19): 3 001-3 004.
89 CaiW, CowanT, SullivanA. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall [J]. Geophysical Research Letters, 2009, 36(11). DOI: .
doi: 10.1029/2009GL037604
90 VinayachandranP N, JaisonKurian, NeemaC P. Indian Ocean response to anomalous conditions in 2006 [J]. Geophysical Research Letters, 2007, 34(15). DOI:.
doi: 10.1029/2007gl030194
91 WebsterP J, MooreA M, LoschniggJ P, et al. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98 [J]. Nature, 1999, 401(6 751): 356-360.
92 SajiN H, YamagataT. Structure of SST and surface wind variability during Indian ocean dipole mode events: COADS observations [J]. Journal of Climate, 2003, 16(16): 2 735-2 751.
93 YuW D, XiangB Q, LiuL, et al. Understanding the origins of interannual thermocline variations in the tropical Indian Ocean [J]. Geophysical Research Letters, 2005, 32(24).DOI: .
doi: 10.1029/2005gl024327
94 YuanD L, LiuH. Long-wave dynamics of sea level variations during Indian Ocean Dipole Events [J]. Journal of Physical Oceanography, 2009, 39(5): 1 115-1 132.
95 TozukaT, LuoJ, MassonS, et al. Decadal modulations of the Indian Ocean Dipole in the SINTEX-F1 Coupled GCM [J]. Journal of Climate, 2007, 20(13): 2 881-2 894.
96 YangY, LiJ P, WuL X, et al. Decadal Indian Ocean dipolar variability and its relationship with the tropical Pacific [J]. Advances in Atmospheric Sciences, 2017, 34(11): 1 282-1 289.
97 ZhangL Y, DuY, CaiW J. Low-frequency variability and the unusual Indian Ocean Dipole Events in 2015 and 2016 [J]. Geophysical Research Letters, 2018, 45(2): 1 040-1 048.
98 AshokK, ChanW L, MotoiT, et al. Decadal variability of the Indian Ocean Dipole [J]. Geophysical Research Letters, 2004, 31(24). DOI:.
doi: 10.1029/2004GL021345
99 YuanY, ChanC L J, ZhouW, et al. Decadal and interannual variability of the Indian Ocean Dipole [J]. Advances in Atmospheric Sciences, 2008, 25(5): 856-866.
100 NidheeshA G, MatthieuLengaigne, Jér?meVialard, et al. Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean [J]. Climate Dynamics, 2012, 41(2): 381-402.
101 UmmenhoferC C, BiastochA, B?ningC W. Multidecadal Indian ocean variability linked to the Pacific and implications for preconditioning Indian Ocean Dipole Events [J]. Journal of Climate, 2017, 30(5): 1 739-1 751.
102 ZhangY, DuY, ZhangY H, et al. Asymmetry of upper ocean salinity response to the Indian Ocean dipole events as seen from ECCO simulation [J]. Acta Oceanologica Sinica, 2016, 35(7): 42-49.
103 YuWeidong, FangYue, LiuLin, et al. Introduction of the second international Indian Ocean Expedition (IIOE-2) [J]. Advances in Marine Science, 2017, 35(1): 1-7.
103 于卫东,方越,刘琳,等.第二次国际印度洋科学考察计划(IIOE-2)介绍[J].海洋科学进展,2017,35(1):1-7.
104 LiuZenghong, WuXiaofen, XuJianping, et al. Fifteen years of ocean observations with China Argo [J]. Advances in Earth Science, 2016, 31(5): 445-460.
104 刘增宏,吴晓芬,许建平,李宏,卢少磊,孙朝辉,曹敏杰.中国Argo海洋观测十五年[J].地球科学进展,2016,31(5):445-460.
No Suggested Reading articles found!