Please wait a minute...
img img
Advances in Earth Science  1999, Vol. 14 Issue (2): 133-139    DOI: 10.11867/j.issn.1001-8166.1999.02.0133
Articles     
PROGRESS IN THE GLOBAL ANALYSIS TO THE ATMOSPHERIC DYNAMICAL EQUATIONS
XIE Zhihui1,CHOU Jifan2
(Department ofGeophysics,Beijing University,Beijing 100871,China)
Download:  PDF (375KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The initial-value problemweather prediction is a classical deterministic problem in classical physics,there are a lot of difficulties in the method of initial-value problemto predict long-rangeweather and short-range climate.Three characteristics of atmospheric motion are very important:nonlinearity,being forced and dissipation.It is necessaryto combine the dynamical and statistical methods.The prediction problemcould be looked as the inverse problemofthe initial-value problem,i.e. an evolution problem,sothe multiple-time data in the past could be used to modify initial values and/or numerical prediction model.The inverse problems are divided into there kinds,there are corresponding solutions.After the inverse problemof the initial-value problem is introduced,the global analysis to the atmospheric dynamical equations(ADE) are reviewed. The global analysis is anothermethod of climate research different fromthe simple initialvalue problem. The global analysis is also called global asymptotic analysis.It is used to study the long-range behavior of deterministic systems.It is unnecessary to solve the equations,the properties ofADE are researched by means of studying the equations themselves.With the aid of the direct geometric pictures(the concept of phase space is introduced),the
qualitative global analysis to the limit solution set of ADE could be done.It is proved that ADE is a special operator equation in Hilbert Space.The properties of operators must be maintainedwhenADE is simplified or discretized.It is revealed that the nonlinear adaptation process of a system to external source,so the system could be described by a small number of degrees of freedomsustaining attractors because of dissipative process.Cell-to-cell mapping is a powerful tool to
study nonlinear systems,by use of the concept and method of cell-to-cell mapping,the global analysis to the general characteristics of numerical model of atmospheric system could be done.The global analysis to round-off errors and observational errors could be done.With the aid of the language of probabilitytheory,the statistical description of the characteristics could be given.It is revealed that the indeterminacy of individual state and the determinacy of global state.The restrict mathematical definition of the vague concept of“CLIMATE”is:climate could be defined as probability distribution function of state variables in chaotic attractors determined by controlling variables,and it is proved that it exists chaotic state in climate systemreally.The approach of quantitative studies to the predictability of the atmosphere could be given,the predictability is the time before the state of a system arrive the probability distribution of chaotic attractors.

Key words:  Atmospheric dynamics      Digital weather forecast      Atmospheric equations      Multiple-time data      Inverse problem      Global analysis      Statistical description·     
Received:  28 April 1998      Published:  01 April 1999
P433  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

XIE Zhihui,CHOU Jifan. PROGRESS IN THE GLOBAL ANALYSIS TO THE ATMOSPHERIC DYNAMICAL EQUATIONS. Advances in Earth Science, 1999, 14(2): 133-139.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.1999.02.0133     OR     http://www.adearth.ac.cn/EN/Y1999/V14/I2/133

〔1〕王鹏飞.大气科学大事年表.中国大百科全书大气科学海洋科学水文科学分卷.北京:中国大百科全书出版社,1987.857~859.
〔2〕Charney J G,Fjortoft R,Von Neumann.Numerical integration of the barotropic vorticity equation.Tellus,1950,2:237~254.
〔3〕Lorenz E N.Deterministic nonperiod flow.J Atmos Sci,1963,20:130~141.
〔4〕丑纪范.为什么要动力—统计相结合.高原气象,1986,5(4):367~372.
〔5〕丑纪范.长期数值天气预报.北京:气象出版社,1986.329.
〔6〕王绍武.短期气候预测研究的历史及现状.气候预测研究.北京:气象出版社,1996.1~17.
〔7〕顾震潮.作为初值问题的天气形势数值预报与由地面天气历史演变作预报的等值性.气象学报,1958,29(2):93~98.
〔8〕顾震潮.天气数值预报中过去资料的使用问题.气象学报,1958,29(3):176~184.
〔9〕丑纪范.天气数值预报中使用过去资料的问题.中国科学,1974,(6):635~644.
〔10〕丑纪范.充分利用观测数据改进动力的短期气候预测方法的研究.大气科学发展暨海峡两岸天气气候学术研讨会论文摘要汇编.北京:气象出版社,1994.31~33.
〔11〕郭秉荣,江剑民,范新岗,等.气候系统的非线性特征及其预测理论.北京:气象出版社,1996.254.
〔12〕郭秉荣,史久恩,丑纪范.以大气温压场连续演变表征下垫面热状况的长期天气数值预报方法.兰州大学学报(自然科学版),1977,(4):73~90.
〔13〕邱崇践,丑纪范.改进数值天气预报的一个新途径.中国科学(B辑),1987,(8):903~910.
〔14〕邱崇践,丑纪范.预报模式识别的扰动方法.大气科学,1988,12(3):225~232.
〔15〕邱崇践,丑纪范.预报模式的参数优化方法.中国科学(B辑),1991,(2):218~225.
〔16〕黄建平,衣育红.利用观测资料反演非线性动力模型.中国科学(B辑),1991,(3):331~336.
〔17〕郜吉东,丑纪范.数值天气预报中的两类反问题及一种数值解法———理想试验.气象学报,1994,52(2):129~137.
〔18〕丑纪范.长期天气数值预报的若干问题.中长期水文气象预报文集(第一集).北京:水利电力出版社,1979.216~221.
〔19〕邱崇践,丑纪范.一种相似—动力天气预报模式.动力统计长期数值天气预报的进展.北京:科学出版社,1989.88~94.
〔20〕邱崇践,丑纪范.一种相似—动力天气预报模式.大气科学,1989,14(1):22~28.
〔21〕黄建平.理论气候模式.北京:气象出版社,1992.184.
〔22〕Huang Jianping,Yi Yuhong,Wang Shaowu,et al.An analogue-dynamical longrange numerical weather prediction system incorporating historical evolution.Quart J of Royal Meteo,1993,119(511):547~565.
〔23〕郑庆林,杜行远.使用多时刻观测资料的数值天气预报新模式.中国科学,1973,(2):289~297.
〔24〕丑纪范.寒潮中期数值预报的多时刻模式.全国寒潮中期预报文集.北京:北京大学出版社,1984.142~151.
〔25〕曹鸿兴.大气运动的自忆性方程.中国科学(B辑),1993,23(1):104~112.
〔26〕曹鸿兴.自忆性方程与自忆模式.气象,1995,21(1):9~13.
〔27〕谷湘潜.一个基于大气自忆原理的谱模式.科学通报,1998,43(9).1~9.
〔28〕丑纪范.大气动力学方程组的全局分析.北京气象学院学报,1995,(1):1~12.
〔29〕郭秉荣,杜行远,丑纪范.大气科学中数学方法的应用.北京:气象出版社,1986.390.
〔30〕Hsu C S.A Generalized Theory of Cell-to-Cell Mapping Dynamical Systems.ASME J of Appl Mech,1980,47:931~939.
〔31〕Hsu C S.Cell-to-cell Mapping—A Method of Global Analysis for Nonlinear System.NewNork:Springer-Verlag,1987.358.
〔32〕丑纪范,刘式达,刘式适.非线性动力学.北京:气象出版社,1994.201.
〔33〕丑纪范.初始场作用的衰减与算子的特性.气象学报,1983,41(4):385~392.
〔34〕丑纪范.大气动力学的新进展.兰州:兰州大学出版社,1990.214.
〔35〕FolasC,TemamR.Some analytic and geometric propertiesofthe solutions of the Navier-Stokes equations.JMath PuresAppl,1979,58:339~368.
〔36〕汪守宏,黄建平,丑纪范.大尺度大气运动方程组解的一些性质.中国科学(B辑),1989,(3):308~336.
〔37〕Lions J L,Temam R,Wang S.New formulations of the primitive equations of atmosphere and applications.Nonlinearity,1992,5:237~288.
〔38〕Lions J L,Temam R,Wang S.On the equations of large-scale ocean.Nonlinearity,1992,5:1007~1053.
〔39〕Lions J L,Temam R,Wang S.Mathematical models and mathematical analysis of the Ocean/Atmosphere system.C R Acad Sci.Paris,1993,316,(Serie 1):113~119.
〔40〕李建平,丑纪范.非定常外源强迫下大尺度大气方程组解的性质.科学通报,1995,40(3):1207~1209.
〔41〕李建平,丑纪范.大气吸引子的存在性.中国科学(D辑),1997,27(1):89~96.
〔42〕李建平,丑纪范.有地形作用下大气方程组解的长期性态.北京气象学院学报,1998,(1):1~12.
〔43〕李建平,丑纪范.湿大气方程组解的渐近性质.气象学报,1999,(待刊).
〔44〕郝柏林.分叉、混沌,奇怪吸引子、湍流及其它———关于确定论系统中的内在随机性.物理学进展,1983,3(3):329~415.
〔45〕张邦林,丑纪范.经验正交函数在气候数值模拟中的应用.中国科学(B辑),1991,(4):442~448.
〔46〕Chou Jifan.Some general properties of the atmospheric model in H space,R space,point mapping,cell mapping.Proceedings of International Summer ColloquiumonNonlinear Dynamicsofthe Atmopshere,10~20,Aug,1986.Beijing:Sciences Press,1987.187~189.
〔47〕Chou Jifan,Xie Zhihui.Nonlinear Dynamics and Climate Modelling.Climate Variability.Beijing:China Meteorological Press,1993.215~221.
〔48〕Lorenz E N.Irregularity:A fundamental propertyof the atmosphere.Tellus,1984,36A:98~110.
〔49〕Chou Jifan.Predictabiligy of the Atmosphere.Advances in Atmospheric Sciences,1989,6(3):335~346.
〔50〕丑纪范.大气科学中非线必与复杂性研究的进展.中国科学院院刊,1997,(5):325~329.
〔51〕丑纪范.大气动力学研究的若干进展和展望.现代大气科学前沿与展望.北京:气象出版社,1996.71~75.

No Suggested Reading articles found!