Advances in Earth Science ›› 2024, Vol. 39 ›› Issue (11): 1196-1209.DOI: 10.11867/j.issn.1001-8166.2024.085

Previous Articles    

Prediction and Application of 3D Collapse Pressure of Fractured Formation Driven by Geophysical Data

Jun LI(), Yang ZHAO(), Zhaozhou CHEN, Lele ZHANG, Huan CAO, Shichang LI   

  1. State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
  • Received:2024-08-13 Revised:2024-10-28 Online:2024-11-10 Published:2025-01-17
  • Contact: Yang ZHAO
  • About author:LI Jun, research areas include stress prediction, well wall stability analysis and other research work. E-mail:wlijun96@163.com
  • Supported by:
    the National Key Research and Development Program of China(2020YFA0710604)

基于地球物理驱动的裂缝性地层三维坍塌压力预测及应用

李珺(), 赵杨(), 陈钊州, 张乐乐, 曹欢, 李世昌   

  1. 中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249
  • 通讯作者: 赵杨
  • 作者简介:李珺,主要从事应力预测、井壁稳定性分析等研究. E-mail:wlijun96@163.com
  • 基金资助:
    国家重点研发计划项目(2020YFA0710604)

Abstract:

Borehole collapse pressure prediction plays a key role in drilling safety, reducing construction costs, and realizing efficient drilling. Fracture development under complex ultra-deep geological conditions significantly affects the prediction of borehole collapse pressure. Conventional methods rely on finite element simulations for 3D geomechanical modeling and 3D collapse stress prediction, which although, highly accurate, requires substantial computational resources. To address this issue, the study proposes an efficient and rapid in situ stress modeling method driven by seismic data, utilized for 3D collapse pressure prediction. Initially, a combined spring model with curvature properties is developed using a multi-scale data of pre-stack seismic and rock mechanics logging to model a three three-dimensional in situ stress field efficiently and rapidly. Next, based on the maximum likelihood attribute, the fracture development was obtained from 3D seismic data to provide 3D weak surface attribute parameters for the study area. Finally, the collapse model of sliding along the fracture plane was calculated using the Mohr-Coulomb criterion. This enables the collapse pressure prediction of the fractured formation from one-dimensional logging data to a three-dimensional working area. This method was applied to the woodworking area of Tari, with results showing a high agreement between model predictions measured data, reaching 93.79%. The prediction results also aligned well with formation micro-resistivity scanning imaging interpretations, verifying the method’s feasibility for predicting borehole wall collapse events. This study demonstrates that rapid, high precision modeling of collapse pressure can provide an integrated geological engineering solution for drilling in ultra-deep and complex areas.

Key words: 3D in-situ stress model, Fractured formation, Maximum likelihood attribute, 3D collapse pressure prediction, Mohr-Coulomb criterion

摘要:

井壁坍塌压力的预测对钻井安全、降低施工成本以及实现高效钻井等具有关键意义,复杂超深层地质条件下的裂缝发育状况对坍塌压力预测存在较大影响。常规的方法大多基于有限元模拟进行三维地质力学建模,并用于三维坍塌应力预测。尽管该方法精度较高,但需要巨大的算力资源,基于此提出了一种基于地震数据驱动的高效快速的地应力建模方法流程,进而用于三维坍塌压力的预测。首先,结合叠前地震和岩石力学测井的多尺度数据资料,建立融入曲率属性的组合弹簧模型,完成了三维地应力场的高效快速建模,并用于三维井周应力计算;其次,基于最大似然属性,从三维地震数据中获取裂缝发育情况,为研究区提供三维弱面属性参数;最后,将井周应力和裂缝参数带入Mohr-Coulomb准则,进行沿裂缝面滑移的坍塌模型计算,实现了裂缝性地层从一维测井数据到三维工区的坍塌压力预测。并将该方法应用于塔里木工区,结果表明,该模型地应力预测结果与实测数据吻合度较高,达到93.79%;坍塌压力预测结果与地层微电阻率扫描成像解释结果相吻合,验证了该方法预测井壁坍塌事件的可行性。实现了高精度坍塌压力的快速建模,有效地为超深复杂地区的钻井施工提供了地质工程一体化解决方案。

关键词: 三维地应力建模, 裂缝性地层, 最大似然属性, 三维坍塌压力预测, Mohr-Coulomb准则

CLC Number: