地球科学进展 ›› 2015, Vol. 30 ›› Issue (4): 477 -486. doi: 10.1167/j.issn.1001-8166.2015.04.0477

上一篇    下一篇

海洋微微型蓝细菌分子生态学研究进展
李佳霖( ), 秦松 *( )   
  1. 中国科学院烟台海岸带研究所海岸带生物学与生物资源利用重点实验室,山东 烟台 264003
  • 收稿日期:2014-12-30 修回日期:2015-03-30 出版日期:2015-04-20
  • 通讯作者: 秦松 E-mail:jlli@yic.ac.cn;sqin@yic.ac.cn
  • 基金资助:
    中国科学院战略先导性科技专项项目二“黑潮及其变异对中国近海生态系统的影响”(编号:XDA11020403);国家自然科学基金青年科学基金项目“莱州湾沿岸河流沉积物的氮输出过程及功能微生物的变迁”(编号:41106100)资助

Advances in Molecular Ecology of Marine Picocyanobacteria

Jialin Li( ), Song Qin( )   

  1. Yantai Institute of Coastal Zone Research,Chinese Academy of Science,Key Laboratory of Coastal Biology and Bioresource Utilization,Yantai 264003,China
  • Received:2014-12-30 Revised:2015-03-30 Online:2015-04-20 Published:2015-04-20

微微型蓝细菌是迄今发现最小也是最古老的光合自养生物,在海洋中分布极广且丰度较高,作为重要的初级生产者对全球碳循环和海洋食物网具有重要贡献。在长期进化中微微型蓝细菌形成简并基因组和高度多样性,其分子生态学的研究能够为理解生物的基因型、表型与生态型的关系以及生物的适应性进化提供关键科学依据。借助分子生物技术的发展,海洋微微型蓝细菌分子生态学近年来的研究揭示了其分布的时空变化特征、不同亚型微尺度分布差异及影响分布的主要环境因子,探讨了环境因子影响下基因组在功能和表达上传递的适应机制信息。通过进一步扩充和挖掘基因组信息,结合分布规律论证微微型蓝细菌在分子水平上的环境适应机制,是实现生态系统微微型蓝细菌功能模块精细化数值模拟的关键,也是未来研究的主要方向和重要内容。

Picocyanobacteria are the smallest and most ancient photosynthetic autotroph known to date with wide distribution and abundant density in the oceans. As the major contributor to primary production, marine picocyanobacteria have significant impacts on global carbon cycles and ocean food web. Given the picocyanobacterial genome streamlining and remarkable diversity during the long process of evolution, studies of their molecular ecology provide key scientific basis for relationships among genotypic, phenotypic and ecological variations, as well as for insights of biotic adaptation evolution in the context of environmental requirements. With the application of newly molecular biotechniques over recent years, our reports on the molecular ecology of marine picocyanobacteria have not only revealed their features of temporal-spatial distribution, fine distribution patterns of genetical subgroups and environmental factors controlling their variations, but also explored their adaptation mechanism derived from information about genomic functions and expressions. Accessing the further progresses in genomic information of these organism, coupled with the advances in the environmental adaptation mechanisms on molecular level given valuable information on distribution characteristics, it would be able to simulate the regulatory and metabolic network of picocyanobacteria in high resolution integrated into the framework of ecosystem model which is the main focus on the future perspectives in molecular ecology of picocyanobacteria.

中图分类号: 

图1 海洋微微型蓝细菌的16S rDNA系统发育树(根据文献[12,19,25]序列信息构建)
Fig.1 Phylogenetic tree of marine picocyanobacteria based on 16S rDNA (sequences derived from references[12, 19, 25])
表1 海洋微微型蓝细菌系统发育分析常用目标基因
Table 1 Target genes used in phylogenetic analysis of marine picocyanobacteria
图2 海洋微微型蓝细菌的生态分布特征及其主要影响因子示意图(根据文献 [ 13 ]修改)
Fig.2 Conceptual diagram showing ecological patterns of marine picocyanobacteria, and representative environmental factors influencing their distribution (modified after reference [ 13 ])
[59] Kettler G C, Martiny A C, Huang K, et al.Patterns and implications of gene gain and loss in the evolution of Prochlorococcus[J]. PLoS Genetics, 2007, 3(12): e231.
[60] Sun Z, Blanchard J L.Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes[J]. PloS ONE, 2014, 9(3): e88837,doi:10.1371/journal.pone.0088837.
[61] Jin Jie, Liu Sumei.Advances in studies of phosphorus utilization by marine phytoplankton[J]. Advances in Earth Science, 2013, 28(2): 253-261.
[金杰,刘素美.海洋浮游植物对磷的响应研究进展[J].地球科学进展,2013, 28(2): 253-261.]
[62] Feingersch R, Philosof A, Mejuch T, et al.Potential for phosphite and phosphonate utilization by Prochlorococcus[J]. The ISME Journal, 2012, 6(4): 827-834.
[63] Krumhardt K M, Callnan K, Roache-Johnson K, et al.Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: Uptake physiology[J]. Environmental Microbiology,2013,15(7): 2 114-2 128.
[64] Ohashi Y, Shi W, Takatani N, et al.Regulation of nitrate assimilation in cyanobacteria[J]. Journal of Experimental Botany, 2011, 62(4): 1 411-1 424.
[65] Kamennaya N A, Post A F.Distribution and expression of the cyanate acquisition potential among cyanobacterial populations in oligotrophic marine waters[J]. Journal Limnology and Oceanography, 2013, 58(6): 1 959-1 971.
[66] Stuart R K, Brahamsha B, Busby K, et al.Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress[J]. The ISME Journal, 2013, 7(6): 1 139-1 149.
[67] Tetu S G, Johnson D A, Varkey D, et al.Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species[J]. Frontiers in Microbiology, 2013, 4: 232.
[1] Ting C S, Rocap G, King J, et al.Cyanobacterial photosynthesis in the oceans: The origins and significance of divergent light-harvesting strategies[J]. Trends in Microbiology, 2002, 10(3): 134-142.
[2] Dishon G, Dubinsky Z, Caras T, et al.Optical habitats of ultraphytoplankton groups in the Gulf of Eilat (Aqaba), Northern Red Sea[J].International Journal of Remote Sensing, 2012, 33(9): 2 683-2 705.
[3] Flombaum P, Gallegos J L, Gordillo R A, et al.Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus[J]. Proceedings of the National Academy of Sciences, 2013, 110(24): 9 824-9 829.
[4] Chen B, Wang L, Song S, et al.Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea[J]. Continental Shelf Research, 2011, 31(14): 1 527-1 540.
[5] Buitenhuis E T, Li W K W, Vaulot D, et al. Picophytoplankton biomass distribution in the global ocean[J]. Earth System Science Data, 2012, 4: 37-46.
[6] Cai Haiyuan, Jiao Nianzhi.Recent progress in Cyanophage[J]. Advances in Earth Science, 2010, 25(10): 1 031-1 039.
[蔡海元,焦念志.聚球藻病毒研究进展[J].地球科学进展,2010,25(10): 1 031-1 039.]
[7] Jiao Nianzhi, Zhang Chuanlun, Xie Shucheng, et al.To decipher the ocean carbon sink through interdisciplinarity and the integration of the past and present[J]. Advances in Earth Science, 2014, 29(11): 1 294-1 297.
[焦念志,张传伦,谢树成,等.古今结合论碳汇、见微知著识海洋[J].地球科学进展,2014,29(11): 1 294-1 297.]
[8] Jiao Nianzhi, Zhang Chuanlun, Li Chao, et al.Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J]. Science in China (Series D),2013, 43(1): 1-18.
[焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J].中国科学:D辑,2013, 43(1): 1-18.]
[9] Martiny A C, Kathuria S, Berube P M.Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10 787-10 792.
[10] Coleman M L, Chisholm S W.Ecosystem-specific selection pressures revealed through comparative population genomics[J]. Proceedings of the National Academy of Sciences, 2010, 107(43): 18 634-18 639.
[11] Scanlan D J, Ostrowski M, Mazard S, et al.Ecological genomics of marine picocyanobacteria[J]. Microbiology and Molecular Biology Reviews, 2009, 73(2): 249-299.
[12] Scanlan D J.Marine picocyanobacteria[C]∥Whitton B A, ed.Ecology of Cyanobacteria II. Netherlands: Springer, 2012.
[13] Paerl H W.Marine plankton[C]∥Whitton B A, ed.Ecology of Cyanobacteria II. Netherlands: Springer, 2012.
[14] Bibby T, Mary I, Nield J, et al.Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem[J]. Nature, 2003, 424(6 952): 1 051-1 054.
[15] Huang S, Wilhelm S W, Harvey H R, et al.Novel lineages of Prochlorococcus and Synechococcus in the global oceans[J]. The ISME Journal, 2012, 6(2): 285-297.
[16] Jing H, Zhang R, Pointing S B, et al.Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong[J]. Canadian Journal of Microbiology, 2009, 55(3): 311-318.
[17] Clark J R, Lenton T M, Williams H T, et al.Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size[J]. Limnology and Oceanography, 2013, 58(3): 1 008-1 022.
[18] Partensky F, Garczarek L.Prochlorococcus: Advantages and limits of minimalism[J]. Annual Review of Marine Science, 2010, 2: 305-331.
[19] West N J, Lebaron P, Strutton P G, et al.A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean[J]. The ISME Journal, 2011, 5(6): 933-944.
[20] Picot J, Guerin C L, Le Van Kim C, et al. Flow cytometry: Retrospective, fundamentals and recent instrumentation[J]. Cytotechnology, 2012, 64(2): 109-130.
[21] Marie D, Shi X L, Rigaut-Jalabert F, et al.Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes in the English Channel[J]. FEMS Microbiology Ecology, 2010, 72(2): 165-178.
[22] Liu H, Jing H, Wong T H, et al.Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong[J]. Environmental Microbiology Reports, 2014, 6(1): 90-99.
[23] Giovannoni S, Stingl U.The importance of culturing bacterioplankton in the ‘omics’ age[J]. Nature Reviews Microbiology, 2007, 5(10): 820-826.
[24] Rappé M S.Stabilizing the foundation of the house that ′omics builds: The evolving value of cultured isolates to marine microbiology[J]. Current Opinion in Microbiology,2013, 16(5): 618-624.
[25] Mazard S, Ostrowski M, Partensky F, et al.Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus[J]. Environmental Microbiology, 2012, 14(2): 372-386.
[26] Biller S J, Berube P M, Berta-Thompson J W, et al. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus[J]. Scientific Data,2014,1: 140034.
[27] Rodrigue S, Malmstrom R R, Berlin A M, et al.Whole genome amplification and de novo assembly of single bacterial cells[J]. PloS ONE, 2009, 4(9): e6864.
[28] Yilmaz S, Singh A K.Single cell genome sequencing[J]. Current Opinion in Biotechnology, 2012, 23(3): 437-443.
[29] Kashtan N, Roggensack S E, Rodrigue S, et al.Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus[J]. Science,2014,344(6 182): 416-420.
[30] Kelly L, Huang K H, Ding H, et al.ProPortal: A resource for integrated systems biology of Prochlorococcus and its phage[J]. Nucleic Acids Research, 2012,(40): D632-D640.
[31] Martinez A, Tyson G W, DeLong E F. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses[J]. Environmental Microbiology,2010, 12(1): 222-238.
[32] Malmstrom R R, Rodrigue S, Huang K H, et al.Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis[J]. The ISME Journal, 2013, 7(1): 184-198.
[33] Morales S E, Holben W E.Linking bacterial identities and ecosystem processes: Can ‘omic’ analyses be more than the sum of their parts?[J]. FEMS Microbiology Ecology, 2011, 75(1): 2-16.
[34] Biller S J, Berube P M, Lindell D, et al.Prochlorococcus: The structure and function of collective diversity[J]. Nature Reviews Microbiology, 2015, 13(1): 13-27.
[35] Jiao N, Luo T, Zhang R, et al.Presence of Prochlorococcus in the aphotic waters of the western Pacific Ocean[J]. Biogeosciences Discussions, 2013, 10(6): 9 345-9 371.
[36] Cottrell M T, Kirchman D L.Photoheterotrophic microbes in the Arctic Ocean in summer and winter[J]. Applied and Environmental Microbiology, 2009, 75(15): 4 958-4 966.
[37] Malmstrom R R, Coe A, Kettler G C, et al.Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans[J]. The ISME Journal, 2010, 4(10): 1 252-1 264.
[38] Ahlgren N A, Rocap G.Diversity and distribution of marine Synechococcus: Multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean[J]. Frontiers in Microbiology, 2012, 3: 213.
[39] Pittera J, Humily F, Thorel M, et al.Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus[J]. The ISME Journal, 2014, 8(6): 1 221-1 236.
[40] Zwirglmaier K, Jardillier L, Ostrowski M, et al.Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes[J]. Environmental Microbiology,2008,10(1): 147-161.
[41] Shibl A A, Thompson L R, Ngugi D K, et al.Distribution and diversity of Prochlorococcus ecotypes in the Red Sea[J]. FEMS Microbiology Letters, 2014, 356(1): 118-126.
[42] del Carmen Muoz-Marín M, Luque I, Zubkov M V, et al. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8 597-8 602.
[43] Engene N, Gunasekera S P, Gerwick W H, et al.Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria[J]. Applied and Environmental Microbiology, 2013, 79(6): 1 882-1 888.
[44] Villeneuve A, Laurent D, Chinain M, et al.Molecular characterization of the diversity and potential toxicity of cyanobacterial mats in two tropical lagoons in the South Pacific Ocean[J]. Journal of Phycology, 2012, 48(2): 275-284.
[45] Paerl R W, Turk K A, Beinart R A, et al.Seasonal change in the abundance of Synechococcus and multiple distinct phylotypes in Monterey Bay determined by rbcL and narB quantitative PCR[J]. Environmental Microbiology,2012, 14(3): 580-593.
[46] Zheng Q, Jiao N, Zhang R, et al.The evolutionary divergence of psbA gene in Synechococcus and their Myoviruses in the East China Sea[J]. PloS ONE, 2014, 9(1): e86644.
[47] Gutiérrez-Rodriguez A, Slack G, Daniels E F, et al.Fine spatial structure of genetically distinct picocyanobacterial populations across environmental gradients in the Costa Rica Dome[J]. Limnology and Oceanography, 2014, 59(3): 705-723.
[48] Perez-Cenci M, Caló G F, Silva R I, et al.The first molecular characterization of picocyanobacteria from the Argentine Sea[J]. Journal of Marine Biology, 2014,doi:10.1155/2014/237628.
[49] Najdek M, Paliaga P, Šilovi T, et al.Picoplankton community structure before, during and after convection event in the offshore waters of the Southern Adriatic Sea[J]. Biogeosciences, 2014, 11(10): 2 645-2 659.
[50] Jing H, Liu H.Phylogenetic composition of Prochlorococcus and Synechococcus in cold eddies of the South China Sea[J]. Aquatic Microbial Ecology, 2012, 65(3): 207-219.
[51] Choi D H, Noh J H, Shim J.Seasonal changes in picocyanobacterial diversity as revealed by pyrosequencing in temperate waters of the East China Sea and the East Sea[J]. Aquatic Microbial Ecology, 2013, 71(1): 75-90.
[52] Davey M, Tarran G A, Mills M M, et al. Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic[J]. Limnology and Oceanography, 2008, 53: 1 722-1 733.
[53] Mackey K R, Rivlin T, Grossman A R, et al.Picophytoplankton responses to changing nutrient and light regimes during a bloom[J]. Marine Biology, 2009, 156(8): 1 531-1 546.
[54] Cerezo M I, Agustí S.PAHs reduce DNA synthesis and delay cell division in the widespread primary producer Prochlorococcus[J]. Environmental Pollution, 2015, 196: 147-155.
[55] Zhang Wuchang, Zhao Yuan, Zhao Li, et al.Review of marine microzooplankton grazing on Synechococcus[J]. Marine Science Bulletin, 2014, 33(6): 611-623.
[张武昌,赵苑,赵丽,等.海洋微型浮游动物摄食聚球蓝细菌研究综述[J].海洋通报,2014, 33(6): 611-623.]
[56] Coelho S M, Simon N, Ahmed S, et al.Ecological and evolutionary genomics of marine photosynthetic organisms[J]. Molecular Ecology, 2013, 22(3): 867-907.
[57] Six C, Thomas J C, Garczarek L, et al.Diversity and evolution of phycobilisomes in marine Synechococcus spp.: A comparative genomics study[J]. Genome Biology,2007, 8(12): R259.
[58] Mella-Flores D, Six C, Ratin M, et al.Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress[J]. Frontiers in Microbiology, 2012, 3: 285.
[1] 张琳琳, 赵晓英, 原慧. 风对植物的作用及植物适应对策研究进展[J]. 地球科学进展, 2013, 28(12): 1349-1353.
[2] 蔡海元,焦念志. 聚球藻病毒研究进展[J]. 地球科学进展, 2010, 25(10): 1031-1039.
阅读次数
全文


摘要