地球科学进展 ›› 2015, Vol. 30 ›› Issue (2): 259 -267. doi: 10.11867/j.issn.1001-8166.2015.02.0259

上一篇    下一篇

储层压实作用和胶结作用的压力响应特征
石良( ), 金振奎 *( ), 闫伟, 魏凯, 朱小二   
  1. 1. 中国石油大学(北京)地球科学学院,北京 102249
    2. 中国石油冀东油田公司勘探开发研究院,河北 唐山 063004
  • 出版日期:2015-03-08
  • 通讯作者: 金振奎 E-mail:sh1558661@163.com;jinzhenkui@188.com
  • 基金资助:
    国家重大科技专项“油气勘探领域储层地质与油气评价”(编号:2009ZX05009-002)资助

Characteristics of Pressure Response in Detrital Resveroir Compaction and Cementation

Liang Shi( ), Zhenkui Jin( ), Wei Yan, Kai Wei, Xiao’er Zhu   

  1. 1. Geoscience College, China University of Petroleum, Beijing 102249,China
    2. Research Institute of Exploration and Development, PeroChina Jidong Oilfield Company, Tangshan, 063004, China
  • Online:2015-03-08 Published:2015-02-20

为了在发育异常高压沉积盆地的中深层进行有效的油气勘探,综合运用薄片、岩心常规、粒度分析、SEM等分析化验资料,探讨了渤中凹陷西北次凹储层压实作用和胶结作用的压力响应特征。得到了异常高压对机械压实具有抑制作用的有力证据。证实了不同胶结物类型有不同的压力响应特征。研究认为,每超静水压力7 MPa的异常高压可保存约2.0%原生孔隙。胶结强度的压力响应特征呈斜坡状:①陡坡段,远离高压界面的常压带→高压界面外280 m,胶结强度迅速增强,以弱胶结为特征,胶结物以自生黏土矿物为主,约占总胶结物的85%;②缓坡段,高压界面外280 m→异常高压带,胶结强度缓慢增大,以强—中胶结为特征,胶结物以碳酸盐为主,约占总胶结物的75%以上。在高压界面附近的常压带,碳酸盐胶结作用的压力响应厚度比自生黏土矿物的响应厚度小,前者约280 m,后者>430 m。研究区原生孔隙与渗透率具有较好相关性,相关系数可达0.77,表明原生孔隙发育的砂岩是优质储层。研究结果可为在异常高压发育的盆地中深层寻找优质储层提供理论依据。

In order to raise up success rate of oil & gas exploration in mid-deep sedimentary basin with overpressures, characteristics of pressure response in reservoir compaction and cementation in Dongying formation in Northwestern Bozhong sag was studied, based on a lot of data from thin section, core analysis, grading analysis, SEM, etc. Strong evidence was obtained to testify that detrital reservoir compaction was inhibited by overpressures. In addition, it was not only proved that both carbonate and authigenic clay would be prompted by overpressures, but also indicated that this two types of cementation had disparate characteristics of pressure response in study area. The results showed that primary pore could be preserved about 2.0% as pore pressure was above hydrostatic pressure every 7 MPa in overpressures setting. With response to overpressure, cementations strength changed typically in scarp shape as depth increased: ①Abrupt slope stage from the less depth to 280 m outside of overpressures interface, where cementation strength swiftly increased, was characterized by weak cementation strength, whose cementation was dominated by authigenic clay with about 85%; ②Gentle slope stag from 280 m outside of overpressures interface to overpressures zone, where cementation strength slowly increased, was characterized by strongmiddle cementation strength,whose cementation was mainly occupied by carbonate cementation with over 75%. In normal pressure zone close to overpressures, influenced depth of carbonate cementation with response to overpressures was obviously shallower than that of authigenic clay minerals, the former was about 280 m and the latter was over 430 m. The correlation between residually primary pore and permeability was well in study area, whose coefficient could be near 0.77. It indicated that sandstone with a number of primary porosity could be effective reservoir in mid-deep strata. The research can be taken as theoretical basis for oil & gas exploration in mid-deep strata of sedimentary basin with overpressures.

中图分类号: 

图1 渤中凹陷构造位置图(据文献[14]修改)
Fig.1 Location of study area(modified from reference [14])
表1 研究区东营组测试孔隙压力
Table1 Measured pressure in Dongying formation in study area
表2 成岩作用强度级别划分表(据文献[17~19]修改)
Table2 Diagenesis strength classification(modified from references [17~19])
图2 研究区东营组储层成岩作用特征 (a)线接触60%,点接触40%,压实减孔率43%,中压实,W1井,2 998.15 m,Ed2L,正交光;(b)线接触20%,点接触80%,压实减孔率28%,弱压实,W1井,3 339.95 m,Ed2L,单偏光(蓝色铸体);(c) 碳酸盐胶结物,W1井,3 343.84 m,Ed2L,正交光(茜红素染色);(d) 铁质(含铁)碳酸盐胶结物,W3井,3 399.11 m, Ed2L,单偏光(茜红素染色);C:方解石;D:白云石;S:菱铁矿;F:铁方解石;A:铁(含铁)白云石
Fig.2 Diagenetic characteristics of Reservoir in Dongying Formation in study area (a) Sample with line contact 60% , point contact 40% and reduction rate of porosity 43%, from well W1 2998.15m (Ed2L) in perpendicular polarized section, is middle compaction; (b)Sample with line contact 20%, point contact 80% and reduction rate of porosity 28%, from well W1 3339.95m (Ed2L) in plane polarized section (the blue is casting), is weak compaction; (c) Carbonate cementation of sample, from well W1 3343.84m (Ed2L) in thin section with perpendicular polarized light (colored by alizarin red); (d) Carbonate cementation of sample with Fe, from well W3 3399.11m (Ed2L) in thin section with plane polarized light (colored by alizarin red).C:Calcite; D:Dolomite; S:Siderite; F:Ferrocalcite; A:Ankerite.
图3 研究区东营组压实作用参数随深度变化
Fig.3 Plot of compaction parameters versus depth in Dongying formation in study area
图4 研究区东营组胶结物特征(SEM) (a)碳酸盐晶体及蠕虫状高岭石,W3井,2996m,Ed2L;(b)波—絮状伊/蒙混层,W3井,3161m,Ed2L;(c)自生黏土矿物及石英加大,W3井,3236m,Ed2L;(d)单莓状黄铁矿,W3井,2996m,Ed2L;D:白云石;K:高岭石;I/M:伊蒙混层;I:伊利石;C:绿泥石;Q:石英次生加大;P:黄铁矿
Fig.4 Cementation characteristics in Dongying formation in study area (SEM) (a)Carbonate in rhombohedral and kaolinite in vermicular, from well W3 2 996 m (Ed2L); (b)I/S mixed layer in flocculent, from well W3 3 161m (Ed2L); (c) Authigenic clay mineral and quartz overgrowth, from well W3 3 236 m (Ed2L) ; (d)Pyrite in single strawberry, from well W3 3 236 m (Ed2L); D:dolomite; K:kaolinite; I/M:I/M mixed layer; I:Illite; C:Chlorite; Q:Quartz overgrowth; P:Pyrite.
图5 研究区东营组砂岩胶结参数随深度变化
Fig.5 Plot of cementation parameters versus depth in Dongying formation in study area
图6 研究区东营组残余原生孔隙度与渗透率交汇图
Fig.6 Plot of residually primary porosity versus permeability in Dongying formation in study area
[1] Du Xu,Zheng Hongyin,Jiao Xiuqiong.Abnormal pressure and hydrocarbon accumulation[J].Earth Science Frontier,1995,2(3/4): 137-148.
[杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘,1995,2(3/4): 137-148.]
[2] Jin Zhenkui,Su Kui,Su Ni’na.Origin of Jurassic deep burial high-quality reservoirs in the central Junggar Basin[J].Acta Petrolei Sinica,2011,32(1): 25-31.
[金振奎,苏奎,苏妮娜.准噶尔盆地腹部侏罗系深部优质储层成因[J].石油学报,2011,32(1): 25-31.]
[3] Stuart C A,Kozik H G.Geopressuring mechanism of smackover gas reservoirs jackson Dome area Mississippi[J].Journal of Petroleum Technology,1977,29(5): 579-585.
[4] Xiao Lihua,Gao Yuting,Tian Weizhi,et al.The retardation of mechanical compaction in clastic rocks by overpressure and the prediction model for porosity[J].Bulletin of Mineral,Petrology and Geochemistry,2011,30(5): 400-406.
[肖丽华,高煜婷,田伟志,等.超压对碎屑岩机械压实作用的抑制与孔隙度预测[J].矿物岩石地球化学通报,2011,30(5): 400-406.]
[5] Sun Yunbao,Zhao Tiehu,Qin Ke.Numerical simulation of overpressure of shallow water flow in Baiyun Sag of the Northern South China Sea[J].Advances in Earth Science,2014,29(9): 1055-1064.
[孙运宝,赵铁虎,秦柯.南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J].地球科学进展,2014,29(9): 1055-1064.]
[6] Ghaith A,Chen W,Ortoleva P.Oscillatory methane release from shale source rock[J].Earth-Science Reviews,1990,29(1): 241-248.
[7] Conybeare D M,Shaw H F.Fracturing,overpressure release and carbonate cementation in the Everest Complex,North Sea[J].Clay Minerals,2000,35(1): 135-149.
[8] Wang Xingxin,Zhou Shuxin.The effects of diagenesis of mudstone on the cementation of a sandstone reservoir[J].Acta Petrolei Sinica,1992,13(4): 20-30.
[王行信,周书欣.泥岩成岩作用对砂岩储层胶结作用的影响[J].石油学报,1992,13(4): 20-30.]
[9] Li Zhong,Fei Weihong,Shou Jianfeng,et al.Overpressure and fluid flow in the Dongpu Depression,North China: Their constraints on diagenesis of reservoir sandstones[J].Acta Geological Sinica,2003,77(1): 126-134.
[李忠,费卫红,寿建峰,等.华北东濮凹陷异常高压与流体活动及其对储集砂岩成岩作用的制约[J].地质学报,2003,77(1): 126-134.]
[10] Zhang Liqiang,Luo Xiaorong.Distribution and characteristics of carbonate cements in overpressure zone of Junggar Basin[J].Petroleum Geology & Experiment,2011,33(4): 388-391.
[张立强,罗晓容.准噶尔盆地高压带碳酸盐胶结层的分布及特征[J].石油实验地质,2011,33(4): 388-391.]
[11] Yang Zhi,Zou Caineng,He Sheng,et al.Formation mechanism of carbonate cemented zones adjacent to the top overpressured surface in the central Junggar Basin,NW China[J].Science in China(Series D),2010,53(4): 529-540.
[杨智,邹才能,何生,等.准噶尔盆地腹部超压顶面附近碳酸盐胶结带的成因机理[J].中国科学: D 辑,2010,40(4): 439-451.]
[12] Zhao Zhenyu,Gu Jiayu,Guo Yanru,et al.Mechanism of generating abnormal overpressure and its influences on super-low permeability reservoirs for upper Es4 member in Chexi depression[J].Journal of China University of Petroleum,2010,34(5): 12-17.
[赵振宇,顾家裕,郭彦如,等.车西洼陷沙四上亚段异常高压形成机制及其对特低渗储层特性的影响[J].中国石油大学学报: 自然科学版,2010,34(5): 12-17.]
[13] Fu Qiang,Xia Qinglong,Zhou Xinhuai,et al.A genetic analysis of the reservior with relatively higher porosity and permeability in paleogene Shahejie Formation,Bozhong Sag: A case of Well QHD35-2-1[J].China Offshore Oil and Gas,2010,22(4): 221-224.
[傅强,夏庆龙,周心怀,等.渤中凹陷古近系沙河街组相对高孔渗储层成因分析——以 QHD35-2-1 井为例[J].中国海上油气,2010,22(4): 221-224.]
[14] Li Jianping,Yang Bo,Zhou Xinhuai,et al.Analysis of sedimentary facies of Dongying Formation in the Bozhong Sag[J].Journal of Northeast Petroleum University,2012,36(4): 1-9.
[李建平,杨波,周心怀,等.渤中凹陷东营组层序地层及其沉积相分析[J].东北石油大学学报,2012,36(4): 1-9.]
[15] Zhu Hongtao,Yang Xianghua,Zhou Xinhuai,et al.High resolution three-dimensional facies architecture delineation using sequence straitigraphy,seismic sedimentology: Example from Dongying Formation in BZ3-1 block of western slope of Bozhong Sag,Bohai Bay Basin[J].Earth Science—Journal of China University of Geoscience,2011,36(6): 1 073-1 084.
[朱红涛,杨香华,周心怀,等.基于层序地层学和地震沉积学的高精度三维沉积体系: 以渤中凹陷西斜坡BZ3-1区块东营组为例[J].地球科学——中国地质大学学报,2011,36(6): 1 073-1 084.]
[16] Yang Bo,Xu Changgui,Niu Chengmin.Conditions for hydrocarbon reservoirs formation of lithologic trap in wall-corner-type steep slope belt: A case on the Paleogene Dongying Formation of BZ3 block in middle part of Shinan steep slope belt,Bohai Bay Basin[J].Journal of Palaeogeography,2012,13(4): 434-442.
[杨波,徐长贵,牛成民.墙角型陡坡带岩性圈闭油气成藏条件研究——以渤海湾盆地石南陡坡带中段 BZ3区古近系东营组为例[J].古地理学报,2012,13(4): 434-442.]
[17] Jin Zhenkui,Liu Chunhui.Quantitative study on reservoir diagenesis in Northern Dagang Structural Belt,Huanghua Depression[J].Petroleum Exploration and Development,2008,35(5): 581-587.
[金振奎,刘春慧.黄骅坳陷北大港构造带储集层成岩作用定量研究[J].石油勘探与开发,2008,35(5): 581-587.]
[18] Fu Jing,Wu Shenghe,Fu Jinhua,et al.Research on quantitative diagenetic facies of the Yanchang Formation in Longdong area,Ordos Basin[J].Earth Science Frontiers,2013,20(2): 86-97.
[付晶,吴胜和,付金华,等.鄂尔多斯盆地陇东地区延长组储层定量成岩相研究[J].地学前缘,2013,20(2): 86-97.]
[19] Wu Shenghe.Reservoir Characterization & Modeling[M].Beijing: Petroleum Industry Press,2010: 215-217.
[吴胜和. 储层表征与建模[M].北京:石油工业出版社,2010: 215-217.]
[20] Scherer M.Parameters influencing porosity in sandstones: A model for sandstone porosity prediction[J]. AAPG Bulletin,1987,71(5): 485-491.
[21] Terzaghi K,Peck R B.Soil Mechanics in Engineering Practice, 3Rd Ed[M]. New York:Wiley,1996:15-100.
[22] Shi Liang, Jin Zhenkui, Yan Wei, et al.Influence mechanisms of detrital dissolution and diagenesis stage in overpressures setting: An example from northwestern Bozhong sag[J]. Journal of China University of Mining & Technology, 2015, 44(2): 297-305.
[石良, 金振奎, 闫伟, 等. 异常高压对储层溶蚀及成岩阶段的影响机理——以渤中凹陷西北次凹为例[J]. 中国矿业大学学报, 2015, 44(2): 297-305.]
[23] Zhang Jinliang,Zhang Penghui,Xie Jun,et al.Diagenesis of clastic reservoirs: Advances and prospects[J].Advances in Earth Science,2013,28(9):957-967.
[张金亮,张鹏辉,谢俊,等.碎屑岩储集层成岩作用研究进展与展望[J].地球科学进展,2013,28(9):957-967.]
[24] Zhang Huolan,Pei Jianxiang,Zhang Yingzhao,et al.Overpressure reservoirs in the mid-deep Huangliu formation of the Dongfang area,Yinggehai Basin,South China Sea[J].Petroleum Exploration and Development,2013,40(3): 284-293.
[张伙兰,裴健翔,张迎朝,等.莺歌海盆地东方区中深层黄流组超压储集层特征[J].石油勘探与开发,2013,40(3): 284-293.]
[25] Hu Zuowei,Li Yun,Huang Sijing,et al.Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J].Advances in Earth Science,2012,27(1): 14-25.
[胡作维,李云,黄思静,等.砂岩储层中原生孔隙的破坏与保存机制研究进展[J].地球科学进展,2012,27(1): 14-25.]
[26] Zhu Xiaomin,Zhong Dakang,Zhang Qin,et al.Reservoir Characteristic and Evaluation in the Palaeogene in Jiyang Depression[M].Beijing: Science Press,2008: 161-168.
[朱筱敏,钟大康,张琴,等.济阳坳陷古近系碎屑岩储层特征和评价[M].北京:科学出版社,2008: 161-168.]
[27] Su Ni’na,Jin Zhenkui,Song Fan.Clastic reservoir characteristics of Shahejie Formation in Beidagang structural belt of Huanghua depression and its controlling factors[J].Journal of China University of Petroleum (Edition of Natural Science),2009,33(6): 27-31.
[苏妮娜,金振奎,宋璠.黄骅坳陷北大港构造带沙河街组碎屑岩储层特征及其控制因素[J].中国石油大学学报: 自然科学版,2009,33(6): 27-31.]
[1] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[2] 冯建伟, 任启强, 徐珂. 基于地质力学方法的低渗透砂岩储层构造裂缝预测研究[J]. 地球科学进展, 2016, 31(9): 946-967.
[3] 冯佳睿, 高志勇, 崔京钢, 周川闽. 深层、超深层碎屑岩储层勘探现状与研究进展[J]. 地球科学进展, 2016, 31(7): 718-736.
[4] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631.
[5] 孟阳. 基于匹配追踪时-频分解技术的辫状河道油藏储层预测[J]. 地球科学进展, 2014, 29(1): 104-110.
阅读次数
全文


摘要