地球科学进展 ›› 2015, Vol. 30 ›› Issue (10): 1119 -1126. doi: 10.11867/j.issn.1001-8166.2015.10.1119.

综述与评述 上一篇    下一篇

CO 2地质封存四维多分量地震监测技术进展
杨扬, 马劲风, 李琳   
  1. 1. 西北大学地质学系,陕西 西安710069; 2. 西北大学大陆动力国家重点实验室,陕西 西安 710069
  • 收稿日期:2015-05-12 修回日期:2015-08-30 出版日期:2015-10-20
  • 通讯作者: 马劲风(1965-),男,河南汝州人,教授,主要从事CO 2地质封存与地球物理勘探研究. E-mail:jfma@nwu.edu.cn E-mail:yangyang04521@sina.com
  • 基金资助:

    国家高技术研究发展计划“二氧化碳地质封存关键技术”(编号: 2012AA050103); 西北大学研究生自主创新项目“CO2地质封存中四维多分量地震资料解释方法研究”(编号:YZZ13014)资助

Research Progress of 4D Multicomponent Seismic Monitoring Techniquein Carbon Capture and Storage

Yang Yang, Ma Jinfeng, Li Lin   

  1. 1. Department of Geology,Northwest University, Xi’an 710069, China; 2. The State Key Laboratory of Continental Dynamics,Northwest University,Xi’an710069,China
  • Received:2015-05-12 Revised:2015-08-30 Online:2015-10-20 Published:2015-10-20

CCS技术是目前公认的快速减缓温室效应的最有效方法,CO2地质封存是CCS技术最核心的问题之一,监测CO2地质封存的安全性贯穿于CO2注入过程中与封存以后。四维地震监测技术是监测CO2是否泄漏、证实CO2封存安全性最有效的技术手段。常规四维地震技术通过对比CO2注入前后及注入不同阶段2次或者多次三维地震纵波振幅差异与旅行时差异,确定CO2在地下分布。而纵波振幅或旅行时差异是CO2饱和度与孔隙压力的综合反映,单纯的纵波信息难以区分饱和度与压力信息。目前,四维多分量地震监测技术的潜力并未挖掘,由于横波速度对于压力敏感,利用四维转换波信息监测CO2地质封存,可以识别注入CO2的压力分布范围。对于各向异性介质的储层,对比一次地震观测PS1,PS2旅行时、振幅差异与2次地震采集之间PS1,PS2旅行时、振幅差异,还可以有效确定注入CO2前与注入期间储层裂隙、裂缝的变化,以及储层与盖层的应力状态。四维多分量地震资料结合岩石物理资料和全波列测井资料,可以更准确地确定可能的CO2泄漏风险区域,更加可靠地评估CO2地质封存的安全性。

Carbon Capture and Storage (CCS) technology is currently recognized as the most effective way to mitigate greenhouse gas. CO2 geological storage is the key technique in CCS, and monitoring the safety of CO2 geological storage runs through the whole CCS project from CO2 injection and after closure. 4D seismic monitoring technique is the most effective way to monitor the leakage of CO2 and to confirm the safety of CO2 sequestration. Traditional 4D seismic technology predicts saturation of CO2 and pressure distribution in reservoir by comparing two vintages seismic amplitude and travel time from two or repeated 3D seismic data before and after CO2 injection or between two different injection stages. 4D multicomponent seismic monitoring has a great potential to be explored. Because shear wave velocity is sensitive to pressure, we may discriminate pore pressure distribution by using 4D multicomponent seismic information. For anisotropy reservoir, we may confirm the change of reservoir fissures and fractures as well as reservoir and caprock stress status before and after CO2 injection through comparing difference of travel time and amplitude of PS1 and PS2 wave in two vintages seismic acquisition. Furthermore, we will find out potential CO2 leakage risk area more accurately and evaluate the safety of CO2 sequestration more reliablely by combining rock physics experiment and dipole sonic log data with 4D multicomponent seismic monitoring.

中图分类号: 

[1] Chu S. Carbon capture and sequestration[J]. Science,2009,325(5 948):1 599.
[2] Wu Jianguo,He Chunyang,Zhang Qingyun, et al.Integrative modeling and strategic planning for regional sustainability under climate change[J]. Advances in Earth Science,2014,29(12):1 315-1 324. [邬建国,何春阳,张庆云,等.全球变化与区域可持续发展耦合模型及调控对策[J].地球科学进展,2014,29(12):1 315-1 324.]
[3] Du Xiangwan. Two basic issues on tackling climate change—The scientificity of strategy addressing climate change and its significance for China’ s development[J]. Advances in Earth Science,2014,29(4):438-442. [杜祥琬.应对气候变化的两个基本问题——应对气候变化战略的科学性及对中国发展的意义[J].地球科学进展,2014,29(4):438-442.]
[4] The United Nations Framework Convention on Climate Change (UNFCCC)-Kyoto Protocol[R/OL].(2009-10-02)[2015-04-10].http:∥unfccc.int/resource/docs/convkp/kpeng.pdf.
[5] Copenhagen Accord[R/OL]. (2009-10-02)[2015-04-10]. http:∥unfccc.int/resource/docs/2009/cmp5/eng/l09.pdf.
[6] Bickle M J. Geological carbon storage[J]. Nature Geoscience,2009,2(12):815-818.
[7] Matter J M,Kelemen P B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J]. Nature Geoscience,2009,2(12):837-841.
[8] Koornneef J,Ramirez A,van Harmelen T, et al. The impact of CO 2 capture in the power and heat sector on the emission of SO 2 ,NOx,particulate matter,volatile organic compounds and NH 3 in the European Union[J]. Atmospheric environment,2010,44(11):1 369-1 385.
[9] Wang Jianghai,Sun Xianxian,Xu Xiaoming, et al.Marine carbon sequestration:Current situation,problems and future[J]. Advances in Earth Science,2015,30(1):17-25. [王江海,孙贤贤,徐小明,等.海洋碳封存技术:现状、问题与未来[J]. 地球科学进展,2015,30(1):17-25.]
[10] Orr F M. Onshore geologic storage of CO 2 [J]. Science,2009,325(5 948):1 656-1 658.
[11] Global Carbon Capture and Storage Institute (GCCSI).The Global Status of CCS[R].Global CCS Institute Report,2014.
[12] Li Qi,Liu Guizhen,Zhang Jian, et al.Status and suggestion of environmental monitoring for CO 2 geological storage[J]. Advances in Earth Science, 2013,28(6):718-727. [李琦,刘桂臻,张建,等. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013,28(6):718-727.]
[13] Ma Jinfeng,Zhang Xiaoli.Geophysical methods for monitoring CO 2 sequestration:Status,challenges and countermeasures[C]∥2010 China Sustainable Development Forum Special Issue. China Population Resources and Environment,2010:223-228. [马劲风,张小莉.CO 2 地质封存的地球物理监测技术现状、挑战与对策[C]∥可持续发展论坛2010专刊(一).中国人口·资源与环境, 2010:223-228.]
[14] White D,Roach L A N,Robert B,et al. Initial results from seismic monitoring at the aquistore CO 2 storage site,Saskatchewan,Canada[J]. Energy Procedia,2014,63:4 418-4 423.
[15] Jiang Huaiyou,Shen Pingping,Lu Ying, et al. Research on the calculation of CO 2 storage in the reservoir all over the world[J]. Advances in Earth Science,2009,24(10):1 122-1 129. [江怀友,沈平平,卢颖,等.世界油气储层二氧化碳埋存量计算研究[J].地球科学进展,2009,24(10):1 122-1 129.]
[16] Li S,Dong M,Li Z, et al. Gas breakthrough pressure for hydrocarbon reservoir seal rocks:Implications for the security of long-term CO 2 storage in the Weyburn field[J]. Geofluids, 2005, 5(4):326-334.
[17] Wei Xiaochen,Li Qi,Xing Huilin, et al.Mechanism of underground fluid injection induced seismicity and its implications for CCS projects[J]. Advances in Earth Science,2014,29(11):1 226-1 241. [魏晓琛,李琦,邢会林,等.地下流体注入诱发地震机理及其对 CO 2 地下封存工程的启示[J].地球科学进展,2014,29(11):1 226-1 241.]
[18] Lumley D. 4D seismic monitoring of CO 2 sequestration[J]. The Leading Edge,2010,29(2): 150-155.
[19] White D J,Hirsche K,Davis T,et al. Theme 2:Prediction,monitoring and Verifi cation of CO 2 movements[M]∥IEA GHG CO 2 Monitoring and Storage Project Summary Report 2000-2004,PTRC,Regina,2004:73-177.
[20] Johnston D H.Practical Applications of Time-lapse Seismic Data[M].Tulsa:Distinguished Instructor Series,Society of Exploration Geophysicists,2013.
[21] Ma J,Morozov I B. AVO modeling of pressure-saturation effects in Weyburn CO 2 sequestration[J]. The Leading Edge,2010,29(2):178-183.
[22] Zhao Bangliu. Theory and Practice of Multi-component Seismic Exploration Technology[M].Beijing:Petroleum Industry Press,2007:76-78. [赵邦六.多分量地震勘探技术理论与实践[M].北京:石油工业出版社,2007:76-78.]
[23] Huang Xude,Yang Wenxia.Converted-wave Seismic Exploration[M].Beijing: Petroleum Industry Press,2008:1-12. [黄绪德,杨文霞.转换波地震勘探[M].北京:石油工业出版社,2008:1-12.]
[24] Kendall R,Wikel K.Multicomponent time-lapse monitoring of bitumen recovery and geomechanical implications[C]∥2011 SEG Annual Meeting.Society of Exploration Geophysicists,2011.
[25] Landrø M,Veire H H,Duffaut K, et al. Discrimination between pressure and fluid saturation changes from marine multicomponent time-lapse seismic data[J]. Geophysics,2003,68(5):1 592-1 599.
[26] DeVault B,Davis T L,Tsvankin I,et al. Multicomponent AVO analysis,Vacuum field,New Mexico[J]. Geophysics,2002,67(3):701-710.
[27] Davis T L,Terrell M J,Benson R D,et al. Multicomponent seismic characterization and monitoring of the CO 2 flood at Weyburn Field,Saskatchewan[J]. The Leading Edge,2003,22(7):696-697.
[28] Araman A W, Hoffman M,Davis T L.Thief zone identification through seismic monitoring of a CO 2 flood,Weyburn field,Saskatchewan[C]∥SEG Annual Meeting.Society of Exploration Geophysicists,2008.
[29] Davis T L,Benson R D,Stroker T. Seal identification from time-lapse multicomponent seismic data,Rulison field,Piceance Basin,Colorado[C]∥2009 SEG Annual Meeting. Society of Exploration Geophysicists,2009.
[30] Rojas N,Davis T L. Multicomponent time-lapse seismic interpretation of Rulison field,Colorado using spectral-decomposition attributes[J]. The Leading Edge,2009,28(11):1 380-1 386.
[31] Davis T L,Bibolova A,O'Brien S,et al. Prediction of residual oil saturation and cap-rock integrity from time-lapse,multicomponent seismic data,Delhi Field,Louisiana[J]. The Leading Edge,2013,32(1):26-31.
[32] Martínez J M,Schmitt D R. Anisotropic elastic moduli of carbonates and evaporites from the Weyburn-Midale reservoir and seal rocks[J]. Geophysical Prospecting,2013,61(2):363-379.
[33] Bale R A,Li J,Mattocks B,et al. Robust estimation of fracture directions from 3-D converted-waves[C]∥2005 SEG Annual Meeti.Society of Exploration Geophysicists,2005.
[34] Bale R,Marchand T,Wilkinson K,et al. The signature of shear-wave splitting:Theory and observations on heavy oil data[J]. The Leading Edge,2013,32(1):14-24.
[35] Grossman J P,Popov G,Steinhoff C. Integration of multicomponent time-lapse processing and interpretation: Focus on shear-wave splitting analysis[J]. The Leading Edge,2013,32(1):32-38.
[36] Sayers C,Wilson T. An introduction to this special section:CO 2 sequestration[J]. The Leading Edge,2010,29(2):148-149.
[37] Dillen M W P. Time-lapse Seismic Monitoring of Subsurface Stress Dynamics[D].Netherlands: Delft University of Technology,2000.
[38] Wu Dongguo,Liu Baihong,Sun Chenglong. A study of 3D3-componts seismic survey design[J]. Chinese Journal of Engineering Geophysics,2013,10(1):85-90. [吴东国,刘百红,孙成龙.三维三分量地震资料采集设计研究[J].工程地球物理学报,2013,10(1):85-90.]
[39] Zhao Pu. Applications on seismic techniques of multiwave and multicomponent in the exploration of coal-field[J]. Goal Geology of China,2001,31(2):62-75. [赵镨.多波多分量地震技术在煤田勘查中的应用[J].中国煤田地质,2001,31(2):62-75.]
[40] Ren Shaoran,Ren Bo,Li Yongzhao, et al. Monitoring techniques of CO 2 geological storage and its application analysis[J]. Journal of China University of Petroleum,2012,36(1):106-111. [任韶然,任博,李永钊,等.CO 2 地质埋存监测技术及其应用分析[J].中国石油大学学报:自然科学版,2012,36(1):106-111.]
[41] Wu Xiuzhang.Carbon Dioxide Capture and Geological Storage—The First Massive Exploration in China[M].Beijing: Science Press,2013. [吴秀章.中国二氧化碳捕集与地质封存——首次规模化探索[M].北京:科学出版社,2013.]
[42] Ma Jinfeng,Wang Xiangzeng,Gao Ruimin, et al.Jingbian CCS project,China: Second year of injection, measurement,monitoring and verification[J].Energy Procedia,2014,63:2 921-2 938.
[43] White D. Seismic characterization and time-lapse imaging during seven years of CO 2 flood in the Weyburn field,Saskatchewan,Canada[J]. International Journal of Greenhouse Gas Control,2013,16(Suppl.1):S78-S94.
[44] Avseth P,Mukerji T,Mavko G. Quantitative Seismic Interpretation:Applying Rock Physics Tools to Reduce Interpretation Risk[M].Cambridge: Cambridge University Press,2005.
[45] Wang Z,Cates M E,Langan R T. Seismic monitoring of a CO 2 flood in a carbonate reservoir:A rock physics study[J]. Geophysics,1998,63(5):1 604-1 617.
[46] Yang Duoxing,Li Qi, Wang Shu. Numerical analysis of the propagation of pore pressure waves in compressible fluid saturated porous media[J]. Rock and Soil Mechanics,2014,35 (7):2 047-2 056. [杨多兴,李琦,王舒.可压缩流体饱和孔隙介质中孔隙压波传播数值分析[J].岩土力学,2014,35 (7):2 047-2 056.]
[47] Ling Lulu,Xu Yaqin,Wang Yongsheng, et al.Application of numerical simulation to pilot project of CO 2 geological sequestration[J]. Rock and Soil Mechanics,2013,34(7):2 017-2 030. [凌璐璐,许雅琴, 王永胜,等.数值模拟在CO 2 地质封存示范项目中的应用[J].岩土力学,2013,34(7):2 017-2 030.]
[48] Zhang Xiaobin, Li Yalin, Tang Jianhou, et al. Using multi-wave data to detect fractures[J].Oil Geophysical Prospecting, 2003, 38(4):431-434,438. [张晓斌,李亚林,唐建侯,等.利用多波资料检测裂缝[J].石油地球物理勘探,2003,38(4):431-434,438.]
[49] Dumitru G,Bale R.Minimum entropy rotation:A new shear-wave splitting technique for converted wave data[C]∥2000 SEG Annual Meeting.Society of Exploration Geophysicists,2000.
[50] Huang Zhongyu,Zhao Jinzhou. Technique of S-wave splitting detection by orthonormal basis rotation[J]. Oil Geophysical Prospecting,2004,39(2):149-152. [黄中玉,赵金洲.正交基旋转的横波分裂检测技术[J].石油地球物理勘探,2004,39(2):149-152.]
[51] Dariu H,Granger P Y,Garotta R J. Birefringence analysis using simulated annealing[C]∥67th EAGE Conference & Exhibition. 2005.
[52] Thomsen L. Weak elastic anisotropy[J]. Geophysics,1986,51(10):1 954-1 966.
[53] Hudson J A,Pointer T,Liu E. Effective-medium theories for fluid-saturated materials with aligned cracks[J]. Geophysical Prospecting, 2001,49(5):509-522.

[1] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[2] 李琦, 宋然然, 匡冬琴, 卢绪涛, 李小春. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展, 2016, 31(3): 225-235.
[3] 魏晓琛, 李琦, 邢会林, 李霞颖, 宋然然. 地下流体注入诱发地震机理及其对CO 2地下封存工程的启示[J]. 地球科学进展, 2014, 29(11): 1226-1241.
[4] 梁金龙,施泽明,徐进勇,高 英. 金红石榴辉岩——一个可能的超球粒陨石Nb/Ta储库[J]. 地球科学进展, 2012, 27(10): 1094-1099.
阅读次数
全文


摘要