地球科学进展 ›› 2017, Vol. 32 ›› Issue (10): 1102 -1111. doi: 10.11867/j.issn.1001-8166.2017.10.1102

上一篇    下一篇

基于不适定反问题求解的降水图像降尺度研究
王根 1, 2( ), 盛绍学 1, 黄勇 3, 吴蓉 4, 刘惠兰 1   
  1. 1.安徽省气象信息中心 安徽省大气科学与卫星遥感重点实验室, 安徽 合肥 230031
    2.中国气象局沈阳大气环境研究所, 辽宁 沈阳 110000
    3.安徽省气象科学研究所,安徽 合肥 230031
    4.安徽省气候中心,安徽 合肥 230031
  • 收稿日期:2017-04-05 修回日期:2017-08-02 出版日期:2017-12-20
  • 基金资助:
    安徽省自然科学基金项目“广义变分同化AIRS水汽通道亮温及在安徽强对流天气预报中的应用研究”(编号:1708085QD89);淮河流域气象开放研究基金项目“基于地面和卫星观测反演的江淮流域降水资料融合算法研究”(编号:HRM201407)资助.

Study on Precipitation Image Downscaling Based on the Method of Ill-posed Problems Solving

Gen Wang 1, 2( ), Shaoxue Sheng 1, Yong Huang 3, Rong Wu 4, Huilan Liu 1   

  1. 1.Anhui Meteorological Information Centre Anhui Key Laboratody of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China
    2.The Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110000, China
    3.Anhui Institute of Meteorological, Hefei 230031, China
    4.Anhui Climate Center, Hefei 230031, China
  • Received:2017-04-05 Revised:2017-08-02 Online:2017-12-20 Published:2017-10-20
  • About author:

    First author:Wang Gen(1983-),male,Taizhou City, Jiangsu Province, Engineer. Research areas include satellite data assimilation, numerical simulation of GRAPES and multi-source data fusion.E-mail:203wanggen@163.com

  • Supported by:
    Project supported by the Natural Science Foundation of Anhui Province“Generalised variational assimilation of AIRS water vapor channel brightness temperature and the application study in severe convective weather in Anhui Province”(No.1708085QD89);The Open Research Fund of Huai River Basin in Meteorological “Study of precipitation data fusion algorithm in Jianghuai Basin based on the ground and satellite observations”(No.HRM201407).

遥感降水产品和环流模型预报降水降尺度研究一直是水文和气象学的热点。使用多源降水融合资料进行降水图像降尺度研究,其本质是提高低分辨率观测或模拟降水场分辨率,并适当增加其细节或高频特性。基于降水自相似结构性质,将不适定数学反问题求解法用于降尺度。在求解降尺度不适定反问题时,不同风暴环境的小规模组织内降水特征往往会重复出现这一性质,通过训练得到高、低分辨率的降水场,形成相应的 “完备字典”,用于正交匹配追踪贪婪法重构高分辨率降尺度的降水场。执行时,首先基于专家场(Fields of Experts,FoEs)模型进行缺测资料插补;其次采用文中方法进行降水图像降尺度应用研究。基于传统“保真度”度量指标和空间结构相似性度量法对该方法得到的试验结果进行评估,结果表明该方法可行。

Downscaling of remote sensing precipitation products and the forecasting of circulation model are always the intense interests in hydrology and meteorology. The essence of downscaling is primarily to enhance resolution of observation or simulated rainfall field, and to appropriately increase its details or high frequency characteristics. Precipitation, as the main driving factors of the earth’s hydrologic cycle, not only affects the moisture and heat condition of a certain river basin, but also affects the global water and heat circulation. Based on the properties of rainfall self-similarity structure, the mathematically ill-posed precipitation problem solving method was used in low resolution downscaling precipitation for high resolution reconstruction. When solving the downscaling ill-posed problem, the greedy method of orthogonal matching pursuit was introduced so as to get the best high-resolution estimation in an optimal sense. It is hard to imagine that we might be able to find very similar (in mathematical norms) precipitation patterns over relatively large storm-scales. However, finding similar features over sufficiently small sub-storm scales seems more feasible. Based on the characteristics that small scale organized precipitation features tend to recur across different storm environments, the precipitation of both high and low resolution was obtained by training, which could be used to reconstruct the desired high-resolution precipitation field. Multi-source merged precipitation products were used in this experiment. Given the consideration of incompleteness of merged precipitation dataset, it was firstly interpolated based on the method of Fields of Experts (FoEs), which could solve the problem that common interpolation method could hardly work on the interpolation for dataset where consecutive missing data exists. Secondly, ideal experiments of precipitation products downscaling were carried out, where smooth coupling sampling and resampling operator were adopted respectively. Assessment based on the metrics of fidelity and spatial structural similarity demonstrates that the method used in this paper is feasible.

中图分类号: 

图1 FoEs模型插补效果分析
Fig.1 Interpolation effect analysis of FoEs model
图2 原始真实场(上图),基于平滑耦合重采样降尺度前(中图)和降尺度后(下图)降水分布
Fig.2 The original true field (above), the distribution of precipitation before downscaling based on smooth coupling resampling (middle) and after downscaling (below)
图3 基于重采样降尺度前(上图)和降尺度后(下图)降水分布
Fig.3 The distribution of precipitation before downscaling based on resampling (above) and after downscaling (below)
表1 降尺度场(结果)和高分辨率场(真值)误差统计比较分析
Table 1 Error statistics obtained by comparing the downscaling filed (result) with the high-resolution filed(true)
[1] Liu Qi, Fu Yunfei.Study on Asian summer precipitation based on TRMM/TMI[J].Science in China(Series D), 2007,37(1):111-122.
[刘奇,傅云飞.基于TRMM/TMI的亚洲夏季降水研究[J].中国科学:D辑,2007,37(1):111-122.]
[2] Zhu Huiyi, Jia Shaofeng.Uncertainty in the spatial interpolation of rainfall data[J].Progress in Geography,2004,23(2):34-42.
[朱会义,贾绍凤.降雨信息空间插值的不确定性分析[J].地理科学进展,2004,23(2):34-42.]
[3] Ye Baisheng, Yang Daqing, Ding Yongjian, et al. A bias-corrected precipitation climatology for China[J].Acta Geographica Sinica, 2007,62(1):3-13.
[叶柏生,杨大庆,丁永建,等.中国降水观测误差分析及其修正[J].地理学报,2007,62(1):3-13.]
[4] Guo J Z, Liang X, Leung L R.Impacts of different precipitation data sources on water budgets[J].Journal of Hydrology, 2004,298:311-334,doi:10.1016/j.jhydrol.2003.08.020.
[5] Rebora N, Ferraris L, Von H J, et al. RainFARM: Rainfall downscaling by a filtered autoregressive model[J]. Journal of Hydrometeorology, 2006,7(4): 724-738.
[6] Nykanen D K, Foufoula G E, Lapenta W M.Impact of small-scale rainfall variability on larger-scale spatial organization of land-atmosphere fluxes[J]. Journal of Hydrometeorology, 2001,2(2): 105-121.
[7] Xiong Qiufen,Huang Mei, Xiong Minquan, et al. Cross-validation error analysis of daily gridded precipitation based on China meteorological observation[J].Plateau Meteorology,2011,30(6):1 615-1 625.
[熊秋芬,黄玫,熊敏诠,等.基于国家气象观测站逐日降水格点数据的交叉检验误差分析[J].高原气象,2011,30(6):1 615-1 625.]
[8] Zhao Yufei,Zhu Jiang.Assessing quality of grid daily precipitation datasets in China in recent 50 years[J].Plateau Meteorology, 2015,34(1):50-58.
[赵煜飞,朱江.近50年中国降水格点日值数据集精度及评估[J].高原气象,2015,34(1):50-58.]
[9] Tan Jianbo,Li Ainong,Lei Guangbin.Contrast on Anusplin and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai-Xizang Plateau[J].Plateau Meteorology,2016,35(4):875-886.
[谭剑波,李爱农,雷光斌.青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J].高原气象,2016,35(4):875-886.]
[10] Wang Lei, Chen Rensheng, Song Yaoxuan.Study of statistical characteristics of wet season hourly rainfall at Hulu watershed with Γ function in Qilian Mountains[J]. Advances in Earth Science, 2016, 31(8): 840-848.
[王磊,陈仁升,宋耀选.基于Γ 函数的祁连山葫芦沟流域湿季小时降水统计特征[J].地球科学进展,2016,31(8): 840-848.]
[11] Ye Xiaoyan, Chen Chongcheng, Luo Ming.Interdecadal relationship between the east Asian summer precipitation and global sea surface temperature anomalies[J]. Advances in Earth Science, 2016, 31(9): 984-994.
[叶晓燕,陈崇成,罗明.东亚夏季降水与全球海温异常的年代际变化关系[J].地球科学进展,2016,31(9):984-994.]
[12] Agam N, Kustas W P, Anderson M C, et al. A vegetation index based technique for spatial sharpening of thermal imagery[J].Remote Sensing of Environment, 2007,107(4): 545-558.
[13] Immerzeel W W, Rutten M M, Droogers P.Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment,2009, 113(2): 362-370.
[14] Jia S, Zhu W, Lu A, et al. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment,2011, 115(12): 3 069-3 079.
[15] Ebtehaj A M, Foufoula G E, Lerman G.Sparse regularization for precipitation downscaling[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(8),doi:10.1029/2011JD017057.
[16] Wang Chunxue, Ma Zhenfeng, Qin Ningsheng,et al.Multi-scale variation of the summer rainfall over Sichuan-Chongqing Basin in recent 50 years[J].Plateau Meteorology,2016,35(5):1 191-1 199.
[王春学,马振峰,秦宁生,等.近50年川渝盆地夏季降水多尺度变化特征[J].高原气象,2016,35(5):1 191-1 199.]
[17] Mallat S G, Zhang Z.Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993,41(12): 3 397-3 415.
[18] Chen S S, Donoho D L, Saunders M A.Atomic decomposition by basis pursuit[J].SIAM Review, 2001,43(1): 129-159.
[19] Mallat S, Yu G.Super-resolution with sparse mixing estimators[J]. IEEE Transactions on Image Processing,2010, 19(11): 2 889-2 900.
[20] Zeyde R, Elad M, Protter M.On single image scale-up using sparse-representations[C]∥International Conference on Curves and Surfaces. Berlin Heidelberg: Springer, 2010:711-730.
[21] Roth S, Black M J.Fields of experts: A framework for learning image priors[C]∥Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2005,(2):860-867.
[22] Roth S, Black M J.Fields of experts[J].International Journal of Computer Vision, 2009,82(2): 205-229.
[23] Wang Gen, Tang Fei, Liu Xiaobei,et al. Application of M-estimators method on FY3B/IRAS channel brightness temperature generalized variational assimilation[J].Journal of Remote Sensing, 2017, 21(1):52-61.
[王根,唐飞,刘晓蓓,等. M-估计法广义变分同化FY3B/IRAS通道亮温[J].遥感学报,2017,21(1):52-61.]
[24] Wang Gen, Zhang Jianwei, Chen Yunjie, et al. An anisotropic GVF model for the MR image segmentation of left ventricle[J].Journal of Computer-Aided Design & Computer Graphics, 2010,22(11):1 887-1 891.
[王根,张建伟,陈允杰,等.一种各向异性GVF模型的心脏左心室MR图像分割模型[J].计算机辅助设计与图形学学报,2010,22(11):1 887-1 891.]
[25] Pan Yang,Shen Yan,Yu Jingjing, et al.Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique[J].Acta Meteorologica Sinica,2012,70(6):1 381-1 389.
[潘旸,沈艳,宇婧婧,等.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J].气象学报,2012,70(6):1 381-1 389.]
[26] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004, 13(4): 600-612.
[1] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[2] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[3] 易雪, 李得勤, 赵春雨, 沈历都, 敖雪, 刘鸣彦. 分析Nudging对辽宁地区降尺度的影响[J]. 地球科学进展, 2018, 33(5): 517-531.
[4] 王林,陈文. 误差订正空间分解法在中国的应用[J]. 地球科学进展, 2013, 28(10): 1144-1153.
[5] 刘永和, 郭维栋, 冯锦明, 张可欣. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 2011, 26(8): 837-847.
[6] 潘小多,李新,钞振华. 区域尺度近地表气候要素驱动数据研制的研究综述[J]. 地球科学进展, 2010, 25(12): 1314-1324.
[7] 张雪芹,彭莉莉,林朝晖. 未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2008, 23(2): 174-185.
[8] 范丽军;符淙斌;陈德亮;. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005, 20(3): 320-329.
[9] 孟宪伟,窦明晓,张晓华. 地球化学系统的自组织、自相似与自相关[J]. 地球科学进展, 1994, 9(6): 53-58.
[10] 杨新社. 地球物理学中的分形与分维研究进展[J]. 地球科学进展, 1991, 6(5): 31-37.
阅读次数
全文


摘要