地球科学进展 ›› 2025, Vol. 40 ›› Issue (12): 1394 -1403. doi: 10.11867/j.issn.1001-8166.2025.099

气候变化响应与绿色能源潜力 上一篇    下一篇

内蒙古奈曼旗风光资源技术可开发潜力精细化评估
崔常男1(), 宋泓明1, 马春爱1, 胡兵2, 何俊梅2, 唐文君2   
  1. 1.中国石油大学(北京) 经济管理学院,北京 102249
    2.中国科学院青藏高原研究所,北京 100101
  • 收稿日期:2025-08-30 修回日期:2025-10-15 出版日期:2025-12-10
  • 基金资助:
    国家自然科学基金项目(42442508)

Refined Assessment of Technically Developable Wind and Solar Energy Potential in Naiman Banner, Inner Mongolia

Changnan CUI1(), Hongming SONG1, Chunai MA1, Bing HU2, Junmei HE2, Wenjun TANG2   

  1. 1.School of Economics and Management, China University of Petroleum (Beijing), Beijing 102249, China
    2.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2025-08-30 Revised:2025-10-15 Online:2025-12-10 Published:2026-01-17
  • About author:CUI Changnan, research area includes new energy management and policy. E-mail: ccn0855@sina.com
  • Supported by:
    the National Natural Science Foundation of China(42442508)

在国家“碳中和”目标与绿色可持续发展助力乡村振兴背景下,加快建设以风光为主的新能源发电设施需要科学合理的开发策略。对太阳能光伏和风力发电的潜力进行精细化评估,有助于更加高效地开发风光资源。基于高精度的太阳辐射卫星反演、高分辨率风速、土地利用和保护区边界等数据,结合先进的太阳能光伏和风电转换模型,对奈曼旗风光资源技术可开发潜力进行精细化评估。评估结果表明:奈曼旗风光资源较为丰富,其中屋顶光伏的总潜力可达13.5 TWh,并呈现出南部和东北部较大、西部和东部较小的空间格局;最优角度固定式光伏的总潜力可达24 TWh,并呈现出西北部、中部和东北部较大,南部较小的空间格局;100 m高度风力发电的总潜力可达18.4 TWh,并呈现出西部最大、中南部较大和北部较小的空间格局;140 m高度风力发电的总潜力可达20.8 TWh,并呈现出西部和东南部最大、其他大部分区域较大的空间格局。研究案例可为光伏开发选址优化、风光资源协同发展路径探索及奈曼旗乡村振兴实践提供科学参考。

Against the backdrop of China’s “carbon neutrality” goal and green sustainable development supporting rural revitalization, accelerating the construction of wind- and solar-dominated renewable energy facilities requires scientifically grounded development strategies. This study conducts a refined assessment of the technically exploitable potential of solar and wind power generation in Naiman Banner by integrating high-precision satellite-derived solar radiation, high-resolution wind speed data, land use, and protected area boundaries, combined with advanced photovoltaic and wind power generation models. The results indicate that Naiman Banner possesses abundant wind and solar resources. The total rooftop photovoltaic potential reaches 13.5 TWh, with a spatial pattern characterized by higher potential in the southern and northeastern regions, and lower in the west and east. The total potential of optimally tilted fixed-angle photovoltaics is estimated at 24 TWh, mainly concentrated in the northwest, central, and northeastern areas, and lower in the south. At 100 meters height, the wind power generation is 18.4 TWh, with the highest values in the west, moderate in the central-southern region, and lower in the north. At 140 meters, the wind power generation increases to 20.8 TWh, with the highest values in the western and southeastern regions, and generally high potential across most other areas. The findings of this case study provide valuable insights for optimizing the planning and siting of PV installations, fostering the co-development of solar and wind energy, and advancing the rural revitalization strategy in Naiman Banner.

中图分类号: 

图1 奈曼旗土地利用类型
Fig. 1 Land use types in Naiman Banner
表1 数据信息与来源
Table 1 Data information and sources
图2 奈曼旗风光资源开发潜力评估技术路线图
基于太阳辐射和风速等气象资料以及地表土地利用等数据,运用地理信息系统筛选适宜开发区域,并用光伏与风力发电模拟模型计算出风光资源的技术可开发潜力。
Fig. 2 Technical roadmap for the development potential assessment of wind and solar resources in Naiman Banner
A two-step methodology was employed: first, GIS was used to screen suitable development zones based on solar radiation, wind speed, and land use criteria; second, the technical power generation potential of these zones was simulated using specialized PV and wind energy models.
表2 太阳能光伏发电土地利用类型的适宜性因子
Table 2 Suitability factors of land use types for solar photovoltaic power generation
表3 风力发电土地利用类型的适宜性因子
Table 3 Suitability factors of land use types for wind power generation land
表4 陆上风力涡轮机相关参数
Table 4 Relevant parameters of onshore turbines
图3 奈曼旗太阳总辐射(a)与光伏容量因子(b)空间分布
Fig. 3 Spatial distribution of solar radiationaand capacity factorbin Naiman Banner
图4 奈曼旗屋顶面积(a)和潜力(b)空间分布
Fig. 4 The rooftop areaaand potentialbspatial distribution in Naiman Banner
图5 奈曼旗土地适应性(a)与固定式最优角度安装(b)空间分布
Fig. 5 Land suitabilityaand spatial distribution of optimal fixed-angle installationbin Naiman Banner
图6 奈曼旗100 m高度风速(a)与容量因子(b)空间分布
Fig. 6 100 m wind speedaand capacity factorbspatial distribution in Naiman Banner
图7 奈曼旗140 m高度风速(a)与容量因子(b)空间分布
Fig. 7 140 m wind speedaand capacity factorbspatial distribution in Naiman Banner
图8 奈曼旗土地适宜性(a)与发电潜力(bc)空间分布
Fig. 8 Land suitabilityaand power generation potentialb and cspatial distribution in Naiman Banner
[1] TANG W J, QI J W, WANG Y, et al. Dense station-based potential assessment for solar photovoltaic generation in China[J]. Journal of Cleaner Production2023, 414. DOI: 10.1016/j.jclepro.2023.137607 .
[2] DUAN H B, ZHOU S, JIANG K J, et al. Assessing China’s efforts to pursue the 1.5 ℃ warming limit[J]. Science2021372(6 540): 378-385.
[3] MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature2020586(7 830): 482-483.
[4] TANG W J, YANG K, QIN J, et al. A 16-year dataset (2000-2015) of high-resolution (3 h, 10 km) global surface solar radiation[J]. Earth System Science Data201911(4): 1 905-1 915.
[5] QIU T Z, WANG L C, LU Y B, et al. Potential assessment of photovoltaic power generation in China[J]. Renewable and Sustainable Energy Reviews2022, 154. DOI: 10.1016/j.rser.2021.111900 .
[6] PRĂVĂLIE R, PATRICHE C, BANDOC G. Spatial assessment of solar energy potential at global scale: a geographical approach[J]. Journal of Cleaner Production2019209: 692-721.
[7] SUBERU M Y, MUSTAFA M W, BASHIR N, et al. Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa[J]. Renewable and Sustainable Energy Reviews201325: 630-642.
[8] STAFFELL I, PFENNINGER S. Using bias-corrected reanalysis to simulate current and future wind power output[J]. Energy2016114: 1 224-1 239.
[9] LEE G R, FREARSON L, RODDEN P. An assessment of photovoltaic modelling software using real world performance data[C]// 26th European PV solar energy conference. CCH Hamburg, Germany, 2011: 4 339-4 343.
[10] JAFRANCESCO D, CARDOSO J P, MUTUBERRIA A, et al. Optical simulation of a central receiver system: comparison of different software tools[J]. Renewable and Sustainable Energy Reviews201894: 792-803.
[11] HUANG G H, LI Z Q, LI X, et al. Estimating surface solar irradiance from satellites: past, present, and future perspectives[J]. Remote Sensing of Environment2019, 233. DOI: 10.1016/j.rse.2019.111371 .
[12] LETU H S, MA R, NAKAJIMA T Y, et al. Surface solar radiation compositions observed from Himawari-8/9 and Fengyun-4 series[J]. Bulletin of the American Meteorological Society2023104(10): E1772-E1789.
[13] TANG W J, LI J, YANG K, et al. Dependence of remote sensing accuracy of global horizontal irradiance at different scales on satellite sampling frequency[J]. Solar Energy2019193: 597-603.
[14] PSOMOPOULOS C S, IOANNIDIS G C, KAMINARIS S D, et al. A comparative evaluation of photovoltaic electricity production assessment software (PVGIS, PVWatts and RETScreen)[J]. Environmental Processes20152(1): 175-189.
[15] ANDERSON K S, HANSEN C W, HOLMGREN W F, et al. Pvlib Python: 2023 project update[J]. Journal of Open Source Software20238(92). DOI: 10.21105/joss.05994 .
[16] KICHOU S, SILVESTRE S, GUGLIELMINOTTI L, et al. Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification[J]. Renewable Energy201699: 270-279.
[17] GUALTIERI G. Reliability of ERA5 reanalysis data for wind resource assessment: a comparison against tall towers[J]. Energies202114(14). DOI: 10.3390/en14144169 .
[18] SOMAN S S, ZAREIPOUR H, MALIK O, et al. A review of wind power and wind speed forecasting methods with different time horizons[C]// North American power symposium 2010. Arlington, TX, USA: IEEE, 2010: 1-8.
[19] ALFUWAIL K, NASIR A, SHAFIULLAH M, et al. Hybrid sliding mode control and RNN-based strategy for maximizing power extraction in small wind turbines for electric vehicles[J]. International Journal of Engineering Science and Application20259(1): 1-9.
[20] GUALTIERI G. Analysing the uncertainties of reanalysis data used for wind resource assessment: a critical review[J]. Renewable and Sustainable Energy Reviews2022, 167. DOI: 10.1016/j.rser.2022.112741 .
[21] TSVETKOVA O, OUARDA T B M J. A review of sensitivity analysis practices in wind resource assessment[J]. Energy Conversion and Management2021, 238. DOI: 10.1016/j.enconman.2021.114112 .
[22] GIL R S A, BARRIGA J E C, MARTÍNEZ J A. Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data[J]. Renewable Energy2021172: 158-176.
[23] LAI Z F, WU T J, FEI X H, et al. BERT4ST: fine-tuning pre-trained large language model for wind power forecasting[J]. Energy Conversion and Management2024, 307. DOI: 10.1016/j.enconman.2024.118331 .
[24] LIU X D, CHEN Z, SI Y L, et al. A review of tidal current energy resource assessment in China[J]. Renewable and Sustainable Energy Reviews2021, 145. DOI:10.1016/j.rser.2021.111012 .
[25] LIU L B, HE G, WU M X, et al. Climate change impacts on planned supply-demand match in global wind and solar energy systems[J]. Nature Energy20238(8): 870-880.
[26] YANG Chun. Comprehensive evaluation of wind power and photovoltaic development potential based on entropy weight topsis model[J]. Acta Energiae Solaris Sinica202243(12): 70-78.
杨春. 基于熵权TOPSIS模型的风电光伏发展潜力评估[J]. 太阳能学报202243(12): 70-78.
[27] CAO Jiongwei, WEI Jiahua, LI Xiang, et al. Potential assesssment and spatio-temporal pattern of solar-wind power in Qinghai Province[J]. Acta Energiae Solaris Sinica202344(10): 255-265.
曹炯玮, 魏加华, 李想, 等. 青海省太阳能—风能发电潜力评估及时空格局[J]. 太阳能学报202344(10): 255-265.
[28] WANG Xueqi, GAO Jinbing, YE Dong, et al. Refined assessment of wind and solar energy resources and technical potential at county level: a case study of Tuquan county[J]. Solar Energy2025(3): 56-65.
王雪琪, 高金兵, 叶冬, 等. 县级区域风能和太阳能资源开发潜力精细化评估: 以突泉县为例[J]. 太阳能2025(3): 56-65.
[29] DUAN Hanchen, WANG Tao, XUE Xian, et al. Spatial-temporal evolution of aeolian desertification and landscape pattern in horqin sandy land: a case study of Naiman Banner in Inner Mongolia[J]. Acta Geographica Sinica201267(7): 917-928.
段翰晨, 王涛, 薛娴, 等. 科尔沁沙地沙漠化时空演变及其景观格局: 以内蒙古自治区奈曼旗为例[J]. 地理学报201267(7): 917-928.
[30] LIU Feng, YANG Guang, HAN Xueying, et al. Spatial-temporal evolution of land use and spatial autocorrelation analysis in Horqin Sandy Land: a case study of Naiman Banner[J]. Journal of Northwest Forestry University202035(4): 148-157.
刘峰, 杨光, 韩雪莹, 等. 科尔沁沙地土地利用时空演变及空间自相关分析: 以奈曼旗为例[J]. 西北林学院学报202035(4): 148-157.
[31] LIU Z P, TANG H, FENG L, et al. China building rooftop area: the first multi-annual (2016-2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from Sentinel-2 imagery[J]. Earth System Science Data202315(8): 3 547-3 572.
[32] TANG W J, XU S, ZHOU X, et al. Meeting China’s electricity demand with renewable energy over Tibetan Plateau[J]. Science Bulletin202368(1): 39-42.
[33] LIU L B, WANG Y, WANG Z, et al. Potential contributions of wind and solar power to China’s carbon neutrality[J]. Resources, Conservation and Recycling2022, 180. DOI: 10.1016/j.resconrec.2022.106155 .
[34] LU T G, SHERMAN P, CHEN X Y, et al. India’s potential for integrating solar and on- and offshore wind power into its energy system[J]. Nature Communications2020, 11. DOI: 10.1038/s41467-020-18318-7 .
[1] 杨小雪, 吴川东, 刘鹄, 赵文智, 何志斌. 陆上风光发电设施影响下的碳循环过程研究评述[J]. 地球科学进展, 2025, 40(2): 193-206.
阅读次数
全文


摘要