地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.025

   

天山北坡短叶羊茅的烷烃和烯烃地球 化学特征与环境响应∗
韦枫1,4,吴保祥1,3*,谢文欣2   
  1. (1.干旱区生态安全与可持续发展重点实验室,中国科学院西北生态环境资源研究院,甘肃 兰州 730000; 2. 甘肃省地质矿产勘查局第二地质矿产勘查院,甘肃 兰州 730020;3. 自然资源部黄河上游战略性 矿产资源重点实验室,甘肃 兰州 730000;4. 中国科学院大学,北京 100049)
  • 基金资助:
    第三次新疆综合科学考察项目(编号:2021xjkk1104)资助.

Geochemical Characteristics of Alkanes and Olefins of Festuca brachyphylla Schult. & Schult. f. and Environmental Responses,Northern Tianshan Mountain*

WEI Feng1, 4, WU Baoxiang1, 3*, XIE Wenxin2   

  1. (1. Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; 2. The Second Geological and Mineral Exploration Institute of Gansu Provincial Bureau of Geology and Mineral Exploration and Development, Lanzhou 730020, China; 3. Key Laboratory of Strategic Mineral Resources in the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730000, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China)
  • About author:WEI Feng, research area includes geochemistry. E-mail: 1354969978@qq.com
  • Supported by:
    Project supported by the Third Comprehensive Scientific Investigation to Xinjiang Program (Grant No. 2021xjkk1104) .
草本植物烃类化合物对评估高海拔寒冷干旱地区生态及环境变化具有重要意义。通过有 机地球化学方法,对天山高寒旱地区草本植物短叶羊茅(Festuca brachyphylla Schult. & Schult. f.) 中烷烃和烯烃进行了分析。结果表明,高寒旱区短叶羊茅中烷烃分布范围为C16~C29,平均碳链长 度为17.91~24.49,主峰碳主要为C16、C18和C29。烯烃分布范围为C16~C31,多数以C18或C20为主峰碳, 平均碳链长度为22.19~26.23,呈双峰型分布。烷烃和烯烃同时展现出整体低碳数组分(烷烃碳数 ≤23;烯烃碳数<27)相对含量高,在低碳数组分中偶奇优势和在高碳数组分中奇偶优势明显的特 征。通过对比湿热和干旱等环境发现,天山高寒旱区短叶羊茅具有低碳数烷烃和烯烃组分含量 高、平均碳链长度值小、偶奇优势在高低碳数烷烃和烯烃组分中分化的独特地球化学特征。同时, 烯烃的平均碳链长度受到水源补给条件影响,水源条件好的短叶羊茅中烯烃值较大;短叶羊茅中 烷烃与烯烃的平均碳链长度具有较为密切的正相关性。研究结果可为理解高寒旱区草本植物的 生态适应机制,以及评估环境变化对生态系统影响提供重要参考。
Abstract:Hydrocarbon compounds in Herbaceous plants play an important role for assessing ecological and environmental changes in cold and arid areas at high altitudes. The alkanes and olefins in Festuca brachyphylla Schult. & Schult. f. from high altitude cold and arid area, Tianshan mountain were analyzed by means of organic geochemical methods, for learning their geochemical characteristics and response to the environment. Results show that, for alkanes in, the carbon numbers range from C16 to C29. The average carbon chain length (ACLAlk) are 17.91~24.49, and the main peak carbon are C16, C18 and C29. For olefins, there are carbon number ranges of C16~C31, the average carbon chain length (ACLOle) of 22.19~26.23,and the main peak carbon mainly C16 and C20. Together, alkanes and olefins in the herb plants exhibit that their overall contents of low carbon number components (carbon number of alkane and olefins are ≤23 and <27, respectively) are relatively higher, and there are even-to-odd predominance in lower carbon number components but odd-to-even predominance in the higher, significantly. By comparing the hot and humid, drought environments, and others, it is found that Festuca brachyphylla Schult. & Schult. f. from high altitude cold and arid area, Tianshan mountain have unique geochemical characteristics, such as with higher content of low carbon alkanes and olefins, lower average carbon chain length (ACL) value, and differentiations of odd-even predominance (OEP) index between of the lower carbon hydrocarbons and of the highers. The average carbon chain length of olefin (ACLOle) value of herbaceous plants with good water supplement are larger, relatively. There is a close positive correlation between the average carbon chain length of alkanes (ACLAlk) and olefins (ACLOle) in Festuca brachyphylla Schult. & Schult. f.. The results obtained provide an important reference for understanding the ecological adaptation mechanism of herbaceous plants in high altitude cold and arid areas and evaluating the impact of environmental changes on ecosystems.

中图分类号: 

[1] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[2] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[3] 张兆永, 吉力力·阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616.
[4] 窦燕,陈曦. 基于站点的中国天山山区积雪要素变化研究[J]. 地球科学进展, 2011, 26(4): 441-448.
[5] 李永军,杨高学,张天继,栾新东,王晓刚. 西天山伊宁地块主褶皱幕鄯善运动的确立及地质意义[J]. 地球科学进展, 2009, 24(4): 420-427.
[6] 张新钰,季建清,韩宝福,陈建军,余绍立. 地表剥蚀、下地壳流变与造山作用研究进展[J]. 地球科学进展, 2006, 21(5): 521-531.
[7] 中国科学院学部"西部生态环境建设与可持续发展"西北干旱区咨询组. 绿桥系统——天山北坡与准噶尔荒漠新产业带建设和生态保育[J]. 地球科学进展, 2003, 18(6): 831-836.
阅读次数
全文


摘要