1 |
LIU J, WANG X F, WU D Y, et al. Historical footprints and future projections of global dust burden from bias-corrected CMIP6 models[J]. NPJ Climate and Atmospheric Science, 2024, 7: 1-12.
|
2 |
KOK J F, STORELVMO T, KARYDIS V A, et al. Mineral dust aerosol impacts on global climate and climate change[J]. Nature Reviews Earth & Environment, 2023, 4: 71-86.
|
3 |
LIU Yonggang, ZHANG Ming, LIN Qifan, et al. Variation of atmospheric dust loading and its climate impacts in different geological periods[J]. Earth Science Frontiers, 2022, 29(5): 285-299.
|
|
刘永岗, 张铭, 林琪凡, 等. 古气候中的沙尘变化及其气候影响[J]. 地学前缘, 2022, 29(5): 285-299.
|
4 |
SHE Feng, TAO Yan. Impact of sand and dust weather on atmospheric environment and human health[J]. City and Disaster Reduction, 2015(4): 8-11.
|
|
佘峰, 陶燕. 沙尘天气对大气环境和人体健康的影响[J]. 城市与减灾, 2015(4): 8-11.
|
5 |
GLIß J, MORTIER A, SCHULZ M, et al. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations[J]. Atmospheric Chemistry and Physics, 2021, 21(1): 87-128.
|
6 |
KOK J F, RIDLEY D A, ZHOU Q, et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance[J]. Nature Geoscience, 2017, 10: 274-278.
|
7 |
KOK J F, ADEBIYI A A, ALBANI S, et al. Contribution of the world’s main dust source regions to the global cycle of desert dust[J]. Atmospheric Chemistry and Physics, 2021, 21(10): 8 169-8 193.
|
8 |
BULLARD J E, BADDOCK M, BRADWELL T, et al. High-latitude dust in the Earth system[J]. Reviews of Geophysics, 2016, 54(2): 447-485.
|
9 |
WANG N, ZHANG Y Y. Long-term variations of global dust emissions and climate control[J]. Environmental Pollution, 2024, 340(Pt 1). DOI: 10.1016/j.envpol.2023.122847 .
|
10 |
CHOOBARI O A, ZAWAR-REZA P, STURMAN A. The global distribution of mineral dust and its impacts on the climate system: a review[J]. Atmospheric Research, 2014, 138: 152-165.
|
11 |
UNO I, EGUCHI K, YUMIMOTO K, et al. Asian dust transported one full circuit around theglobe[J]. Nature Geoscience, 2009, 2: 557-560.
|
12 |
CHTIOUI H, BOUCHLAGHEM K, HICHEM G M. Identification and assessment of intense African dust events and contribution to PM10 concentration in Tunisia[J]. The European Physical Journal Plus, 2019, 134 134(575):1-10.
|
13 |
TOBÍAS A, PÉREZ L, DÍAZ J, et al. Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain)[J]. Science of the Total Environment, 2011, 412/413: 386-389.
|
14 |
YU H B, REMER L A, CHIN M, et al. A satellite-based assessment of transpacific transport of pollution aerosol[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D14). DOI: 10.1029/2007JD009349 .
|
15 |
HUANG J, LI Y, FU C, et al. Dryland climate change: recent progress and challenges[J]. Reviews of Geophysics, 2017, 55(3): 719-778.
|
16 |
WAGNER F, BORTOLI D, PEREIRA S, et al. Properties of dust aerosol particles transported to Portugal from the Sahara desert[J]. Tellus B, 2009, 61(1): 297-306.
|
17 |
HUANG J, FU Q, SU J, et al. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J]. Atmospheric Chemistry and Physics, 2009, 9(12): 4 011-4 021.
|
18 |
BI H R, CHEN S Y, ZHANG D Z, et al. The circumglobal transport of massive African dust and its impacts on the regional circulation in remote atmosphere[J]. Bulletin of the American Meteorological Society, 2023, 105(3): E605-E622.
|
19 |
CHEN Y, CHEN S Y, ZHOU J, et al. A super dust storm enhanced by radiative feedback[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00418-y .
|
20 |
BARR S L, WYLD B, MCQUAID J B, et al. Southern Alaska as a source of atmospheric mineral dust and ice-nucleating particles[J]. Science Advances, 2023, 9(33). DOI: 10.1126/sciadv.adg3708 .
|
21 |
ZHOU R J, YAN T Y, YANG S P, et al. Characteristics of clouds, precipitation, and latent heat in midlatitude frontal system mixed with dust storm from GPM satellite observations and WRF simulations[J]. JUSTC, 2022, 52(2). DOI:10.52396/JUSTC-2021-0238 .
|
22 |
HUANG Weiwei, YANG Jun, LING Shibing, et al. Effects of the heterogeneous-phase chemical processes on mineral aerosols on the growth of cloud droplets[J]. Journal of Nanjing Institute of Meteorology, 2007, 30(2): 210-215.
|
|
黄蔚薇, 杨军, 凌士兵, 等. 沙尘气溶胶粒子表面变性对云滴形成过程的影响[J]. 南京气象学院学报, 2007, 30(2): 210-215.
|
23 |
ALBRECHT B A. Aerosols, cloud microphysics, and fractional cloudiness[J]. Science, 1989, 245(4 923): 1 227-1 230.
|
24 |
TELLER A, XUE L, LEVIN Z. The effects of mineral dust particles, aerosol regeneration and ice nucleation parameterizations on clouds and precipitation[J]. Atmospheric Chemistry and Physics, 2012, 12(19): 9 303-9 320.
|
25 |
HUANG Z W, YU X R, LIU Q T, et al. Bioaerosols in the atmosphere: a comprehensive review on detection methods, concentration and influencing factors[J]. Science of the Total Environment, 2024, 912. DOI: 10.1016/j.scitotenv.2023.168818 .
|
26 |
SHI Guangyu, TAN Saichun, CHEN Bin. Environmental and climatic effects of mineral dust and bioaerosol[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 559-569.
|
|
石广玉, 檀赛春, 陈彬. 沙尘和生物气溶胶的环境和气候效应[J]. 大气科学, 2018, 42(3): 559-569.
|
27 |
QI Jianhua, LI Mengzhe, GAO Dongmei, et al. Impact of dust events on the concentration, property and distribution of atmospheric bioaerosols[J]. Advances in Earth Science, 2018, 33(6): 568-577.
|
|
祁建华, 李孟哲, 高冬梅, 等. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
|
28 |
LI Sheng, WANG Jinyu, LI Pu, et al. Health effects and mechanisms of dust weather on human respiratory system: a review of recent studies[J]. Journal of Environment and Health, 2019, 36(1): 78-82.
|
|
李盛, 王金玉, 李普, 等. 沙尘天气的呼吸系统健康效应及机制研究进展[J]. 环境与健康杂志, 2019, 36(1): 78-82.
|
29 |
SUN Zhaobin, AN Xingqin, CUI Mengmeng, et al. The effect of PM2.5 and PM10 on cardiovascular and cerebrovascular diseases admission visitors in Beijing areas during dust weather, non-dust weather and haze pollution[J]. China Environmental Science, 2016, 36(8): 2 536-2 544.
|
|
孙兆彬, 安兴琴, 崔甍甍, 等. 北京地区颗粒物健康效应研究: 沙尘天气、非沙尘天气下颗粒物(PM2.5、PM10)对心血管疾病入院人次的影响[J]. 中国环境科学, 2016, 36(8): 2 536-2 544.
|
30 |
ZHANG C, YAN M L, DU H, et al. Mortality risks from a spectrum of causes associated with sand and dust storms in China[J]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-42530-w .
|
31 |
MEINANDER O, DAGSSON-WALDHAUSEROVA P, AMOSOV P, et al. Newly identified climatically and environmentally significant high-latitude dust sources[J]. Atmospheric Chemistry and Physics, 2022, 22(17): 11 889-11 930.
|
32 |
SARANGI C, QIAN Y, RITTGER K, et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia[J]. Nature Climate Change, 2020, 10: 1 045-1 051.
|
33 |
RÉVEILLET M, DUMONT M, GASCOIN S, et al. Black carbon and dust alter the response of mountain snow cover under climate change[J]. Nature Communications, 2022, 13. DOI:10.21203/rs.3.rs-800501/v1 .
|
34 |
YANG Tao, GUO Lingpeng, HUANG Farong, et al. Influence of dust on snowpack in the Tianshan Mountains[J]. Arid Zone Research, 2018, 35(1): 122-129.
|
|
杨涛, 郭玲鹏, 黄法融, 等. 沙尘对天山积雪消融的影响[J]. 干旱区研究, 2018, 35(1): 122-129.
|
35 |
DING Yanan, NA Hong, QI Jianhua. Effects of iron and copper in Asian dust on dominant bacterioplankton abundance in the surface of the Yellow Sea[J]. Periodical of Ocean University of China, 2023, 53(11): 99-110.
|
|
丁雅楠, 那红, 祁建华. 亚洲沙尘中铁、铜对黄海近海表层优势浮游细菌丰度影响的模拟研究[J]. 中国海洋大学学报(自然科学版), 2023, 53(11): 99-110.
|
36 |
LIU Chang, MAO Zhihua, CHEN Huanhuan, et al. Responses of marine primary production caused by deposition of typical natural aerosols[J]. Oceanologia et Limnologia Sinica, 2024, 55(2): 363-374.
|
|
刘畅, 毛志华, 陈焕焕, 等. 典型自然源气溶胶沉降引起的海洋初级生产响应[J]. 海洋与湖沼, 2024, 55(2): 363-374.
|
37 |
WESTBERRY T K, BEHRENFELD M J, SHI Y R, et al. Atmospheric nourishment of global ocean ecosystems[J]. Science, 2023, 380(6 644): 515-519.
|
38 |
CHEN Yao, LU Huayu, WU Huijuan, et al. Global desert variation under climatic impact during 1982-2020[J]. Science China: Earth Sciences, 2023, 66(5): 1 062-1 071.
|
|
陈瑶, 鹿化煜, 吴会娟, 等. 全球沙漠变化的气候影响[J]. 中国科学: 地球科学, 2023, 53(5): 1 057-1 066.
|
39 |
PU B, JIN Q J. A record-breaking trans-Atlantic African dust plume associated with atmospheric circulation extremes in June 2020[J]. Bulletin of the American Meteorological Society, 102(7): E1340-E1356.
|
40 |
YU H B, TAN Q, ZHOU L, et al. Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020[J]. Atmospheric Chemistry and Physics, 2021, 21(16): 12 359-12 383.
|
41 |
PU B, JIN Q J. The “godzilla” dust plume: record-breaking African dust swept Atlantic in 2020[J]. Bulletin of the American Meteorological Society, 2023, 104(1): 38-42.
|
42 |
HEINTZENBERG J. The SAMUM-1 experiment over southern Morocco: overview and introduction[J]. Tellus B, 2009, 61(1): 2-11.
|
43 |
WEINZIERL B, PETZOLD A, ESSELBORN M, et al. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006[J]. Tellus B, 2009, 61(1): 96-117.
|
44 |
KANDLER K, SCHÜTZ L, DEUTSCHER C, et al. Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006[J]. Tellus B, 2009, 61(1): 32-50.
|
45 |
KAADEN N, MASSLING A, SCHLADITZ A, et al. State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco[J]. Tellus B, 2009, 61(1): 51-63.
|
46 |
TESCHE M, ANSMANN A, MÜLLER D, et al. Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM[J]. Tellus B, 2009, 61(1): 144-164.
|
47 |
ESSELBORN M, WIRTH M, FIX A, et al. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006[J]. Tellus B, 2009, 61(1): 131-143.
|
48 |
FREUDENTHALER V, ESSELBORN M, WIEGNER M, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus B: Chemical and Physical Meteorology, 61(1): 165-179.
|
49 |
von HOYNINGEN-HUENE W, DINTER T, KOKHANOVSKY A A, et al. Measurements of desert dust optical characteristics at Porte au Sahara during SAMUM[J]. Tellus B, 2009, 61(1): 206-215.
|
50 |
RYDER C L, HIGHWOOD E J, LAI T M, et al. Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust[J]. Geophysical Research Letters, 2013, 40(10): 2 433-2 438.
|
51 |
VARGA G, DAGSSON-WALDHAUSEROVÁ P, GRESINA F, et al. Saharan dust and giant quartz particle transport towards Iceland[J]. Scientific Reports, 2021, 11(1). DOI: 10.1038/s41598-021-91481-z .
|
52 |
ANSMANN A, BÖSENBERG J, CHAIKOVSKY A, et al. Long-range transport of Saharan dust to northern Europe: the 11-16 October 2001 outbreak observed with EARLINET[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D24). DOI: 10.1029/2003JD003757 .
|
53 |
CHEN W N, TSAI F J, CHOU C C, et al. Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan [J]. Atmospheric Environment, 2007, 41(36): 7 698-7 714.
|
54 |
MÜLLER D, MATTIS I, WANDINGER U, et al. Saharan dust over a central European EARLINET-AERONET site: combined observations with Raman lidar and Sun photometer[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D12). DOI: 10.1029/2002JD002918 .
|
55 |
NISANTZI A, MAMOURI R E, ANSMANN A, et al. Middle East versus Saharan dust extinction-to-backscatter ratios[J]. Atmospheric Chemistry and Physics, 2015, 15(12): 7 071-7 084.
|
56 |
SCHUSTER G L, VAUGHAN M, MACDONNELL D, et al. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust[J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7 431-7 452.
|
57 |
GO S, LYAPUSTIN A, SCHUSTER G L, et al. Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations[J]. Atmospheric Chemistry and Physics, 2022, 22(2): 1 395-1 423.
|
58 |
EVAN A T, FIEDLER S, ZHAO C, et al. Derivation of an observation-based map of north African dust emission[J]. Aeolian Research, 2015, 16: 153-162.
|
59 |
TINDAN J Z, JIN Q J, PU B. Understanding day-night differences in dust aerosols over the dust belt of North Africa, the Middle East, and Asia[J]. Atmospheric Chemistry and Physics, 2023, 23(9): 5 435-5 466.
|
60 |
MBOUROU G N, BERTRAND J J, NICHOLSON S E. The diurnal and seasonal cycles of wind-borne dust over Africa north of the equator[J]. Journal of Applied Meteorology, 1997, 36(7): 868-882.
|
61 |
ENGELSTAEDTER S, TEGEN I, WASHINGTON R. North African dust emissions and transport[J]. Earth-Science Reviews, 2006, 79(1/2): 73-100.
|
62 |
TODD M C, WASHINGTON R, RAGHAVAN S, et al. Regional model simulations of the bodélé low-level jet of northern Chad during the bodélé dust experiment (BoDEx 2005)[J]. Journal of Climate, 2008, 21(5): 995-1 012.
|
63 |
GAMO M. Thickness of the dry convection and large-scale subsidence above deserts[J]. Boundary-Layer Meteorology, 1996, 79(3): 265-278.
|
64 |
CUESTA J, FLAMANT C, GAETANI M, et al. Three-dimensional pathways of dust over the Sahara during summer 2011 as revealed by new infrared atmospheric sounding interferometer observations[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(731): 2 731-2 755.
|
65 |
ALPERT P, ZIV B. The sharav cyclone: observations and some theoretical considerations[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18 495-18 514.
|
66 |
KARAM D B, FLAMANT C, CUESTA J, et al. Dust emission and transport associated with a Saharan depression: February 2007 case[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D4). DOI: 10.1029/2009JD012390 .
|
67 |
KNIPPERTZ P, TODD M C. Mineral dust aerosols over the Sahara: meteorological controls on emission and transport and implications for modeling[J]. Reviews of Geophysics, 2012, 50(1). DOI: 10.1029/2011RG000362 .
|
68 |
KNIPPERTZ P, DEUTSCHER C, KANDLER K, et al. Dust mobilization due to density currents in the Atlas region: observations from the Saharan mineral dust experiment 2006 field campaign[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D21). DOI: 10.1029/2007JD008774 .
|
69 |
EMMEL C, KNIPPERTZ P, SCHULZ O. Climatology of convective density currents in the southern foothills of the Atlas Mountains[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D11). DOI:10.1029/2009JD012863 .
|
70 |
ALLEN C J T, WASHINGTON R. The low-level jet dust emission mechanism in the central Sahara: observations from Bordj-Badji Mokhtar during the June 2011 Fennec intensive observation period[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(6): 2 990-3 015.
|
71 |
CATON H T, WASHINGTON R, ENGELSTAEDTER S. A 14-year climatology of Saharan dust emission mechanisms inferred from automatically tracked plumes[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(16): 9 665-9 690.
|
72 |
KOCH J, RENNO N O. The role of convective plumes and vortices on the global aerosol budget[J]. Geophysical Research Letters, 2005, 32(18). DOI: 10.1029/2005GL023420 .
|
73 |
ANSMANN A, TESCHE M, KNIPPERTZ P, et al. Vertical profiling of convective dust plumes in southern Morocco during SAMUM[J]. Tellus B, 2009, 61(1): 340-353.
|
74 |
CUEVAS E, GÓMEZ-PELÁEZ A J, RODRÍGUEZ S, et al. The pulsating nature of large-scale Saharan dust transport as a result of interplays between mid-latitude Rossby waves and the North African Dipole Intensity[J]. Atmospheric Environment, 2017, 167: 586-602.
|
75 |
WANG W J, EVAN A T, LAVAYSSE C, et al. The role the Saharan heat low plays in dust emission and transport during summertime in North Africa[J]. Aeolian Research, 2017, 28: 1-12.
|
76 |
ENGELSTAEDTER S, WASHINGTON R. Atmospheric controls on the annual cycle of North African dust[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D3). DOI: 10.1029/2006JD007195 .
|
77 |
WILLIAMS E R. Comment on “Atmospheric controls on the annual cycle of North African dust” by S. Engelstaedter and R. Washington[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23). DOI:10.1029/2006JD007195 .
|
78 |
ADAMS A M, PROSPERO J M, ZHANG C D. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents[J]. Journal of Climate, 2012, 25(19): 6 862-6 879.
|
79 |
JONES C, MAHOWALD N, LUO C. The role of easterly waves on African desert dust transport[J]. Journal of Climate, 2003, 16(22): 3 617-3 628.
|
80 |
JONES C, MAHOWALD N, LUO C. Observational evidence of African desert dust intensification of easterly waves[J]. Geophysical Research Letters, 2004, 31(17). DOI: 10.1029/2004GL020107 .
|
81 |
BERCOS-HICKEY E, NATHAN T R, CHEN S H. On the relationship between the African easterly jet, Saharan mineral dust aerosols, and west African precipitation[J]. Journal of Climate, 2018, 33(9): 3 533-3 546.
|
82 |
DOHERTY O M, RIEMER N, HAMEED S. Saharan mineral dust transport into the Caribbean: observed atmospheric controls and trends[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D7). DOI:10.1029/2007JD009171 .
|
83 |
LI W, WANG Y X. Reduced surface fine dust under droughts over the southeastern United States during summertime: observations and CMIP6 model simulations[J]. Atmospheric Chemistry and Physics, 2022, 22(12): 7 843-7 859.
|
84 |
MOULIN C, LAMBERT C E, DULAC F, et al. Control of atmospheric export of dust from north Africa by the north Atlantic oscillation[J]. Nature, 1997, 387: 691-694.
|
85 |
RAMÍREZ-ROMERO C, JARAMILLO A, CÓRDOBA M F, et al. African dust particles over the western Caribbean-part I: impact on air quality over the yucatán peninsula[J]. Atmospheric Chemistry and Physics, 2021, 21(1): 239-253.
|
86 |
KUTUZOV S, SHAHGEDANOVA M, MIKHALENKO V, et al. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009-2012 using snow pit and firn core records[J]. The Cryosphere, 2013, 7(5): 1 481-1 498.
|
87 |
VARGA G. Changing nature of Saharan dust deposition in the Carpathian basin (central Europe): 40 years of identified north African dust events (1979-2018)[J]. Environment International, 2020, 139. DOI: 10.1016/j.envint.2020.105712 .
|
88 |
HU Z Y, HUANG J P, ZHAO C, et al. Trans-Pacific transport and evolution of aerosols: spatiotemporal characteristics and source contributions[J]. Atmospheric Chemistry and Physics, 2019, 19(19): 12 709-12 730.
|
89 |
HU Z Y, HUANG J P, ZHAO C, et al. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2020, 20(3): 1 507-1 529.
|
90 |
HU Z Y, HUANG J P, ZHAO C, et al. Modeling the contributions of Northern Hemisphere dust sources to dust outflow from East Asia[J]. Atmospheric Environment, 2019, 202: 234-243.
|
91 |
MCKENDRY I G, STRAWBRIDGE K B, O’NEILL N T, et al. Trans-Pacific transport of Saharan dust to western North America: a case study[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D1). DOI: 10.1029/2006JD007129 .
|
92 |
AWAD A M, MASHAT A S. Synoptic features associated with dust transition processes from North Africa to Asia[J]. Arabian Journal of Geosciences, 2014, 7(6): 2 451-2 467.
|
93 |
YANG K, WANG Z E, LUO T, et al. Upper troposphere dust belt formation processes vary seasonally and spatially in the Northern Hemisphere[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00353-5 .
|
94 |
KAUFMAN Y J, TANRÉ D, BOUCHER O. A satellite view of aerosols in the climate system[J]. Nature, 2002, 419(6 903): 215-223.
|
95 |
KAUFMAN Y J, KOREN I, REMER L A, et al. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10). DOI: 10.1029/2003JD004436 .
|
96 |
HUANG Yue, CHEN Bin, DONG Li, et al. Analysis of a dust weather process over east Asia in May 2019 based on satellite and ground-based lidar[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(3): 524-538.
|
|
黄悦, 陈斌, 董莉, 等. 利用星载和地基激光雷达分析2019年5月东亚沙尘天气过程[J]. 大气科学, 2021, 45(3): 524-538.
|
97 |
BONG P C, SUGIMOTO N, MATSUI I, et al. Long-range transport of Saharan dust to east Asia observed with lidars[J]. Sola, 2005, 1: 121-124.
|
98 |
TANAKA T Y, KUROSAKI Y, CHIBA M, et al. Possible transcontinental dust transport from north Africa and the middle east to east Asia[J]. Atmospheric Environment, 2005, 39(21): 3 901-3 909.
|
99 |
LEE H N, IGARASHI Y, CHIBA M, et al. Global model simulations of the transport of Asian and Sahara dust: total deposition of dust mass in Japan[J]. Water, Air, and Soil Pollution, 2006, 169(1): 137-166.
|
100 |
HSU S C, HUH C A, LIN C Y, et al. Dust transport from non-east Asian sources to the north Pacific[J]. Geophysical Research Letters, 2012, 39(12). DOI: 10.1029/2012GL051962 .
|
101 |
ZHOU T, ZHOU X W, YANG Z N, et al. Transboundary transport of non-east and East Asian dust observed at Dunhuang, northwest China[J]. Atmospheric Environment, 2024, 318. DOI: 10.1016/j.atmosenv.2023.120197 .
|
102 |
LIU Q T, HUANG Z W, HU Z Y, et al. Long-range transport and evolution of Saharan dust over east Asia from 2007 to 2020[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(18). DOI:10.1029/2022JD036974 .
|
103 |
MAO R, HU Z Y, ZHAO C, et al. The source contributions to the dust over the Tibetan Plateau: a modelling analysis[J]. Atmospheric Environment, 2019, 214. DOI:10.1016/j.atmosenv.2019.116859 .
|
104 |
ODUBER F, CALVO A I, BLANCO-ALEGRE C, et al. Unusual winter Saharan dust intrusions at northwest Spain: air quality, radiative and health impacts[J]. Science of the Total Environment, 2019, 669: 213-228.
|
105 |
GINI M, MANOUSAKAS M, KARYDAS A G, et al. Mass size distributions, composition and dose estimates of particulate matter in Saharan dust outbreaks[J]. Environmental Pollution, 2022, 298. DOI: 10.1016/j.envpol.2021.118768 .
|
106 |
SCHLESINGER P, MAMANE Y, GRISHKAN I. Transport of microorganisms to Israel during Saharan dust events[J]. Aerobiologia, 2006, 22(4): 259-273.
|
107 |
KORTE L F, PAUSCH F, TRIMBORN S, et al. Effects of dry and wet Saharan dust deposition in the tropical North Atlantic Ocean[J]. Biogeosciences Discussions, 2018. DOI:10.5194/bg-2018-484 .
|
108 |
YU H B, CHIN M, YUAN T L, et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations[J]. Geophysical Research Letters, 2015, 42(6): 1 984-1 991.
|
109 |
GALLISAI R, PETERS F, VOLPE G, et al. Saharan dust deposition may affect phytoplankton growth in the Mediterranean Sea at ecological time scales[J]. PLoS ONE, 2014, 9(10). DOI: 10.1371/journal.pone.0110762 .
|
110 |
RAVELO-PÉREZ L M, RODRÍGUEZ S, GALINDO L, et al. Soluble iron dust export in the high altitude Saharan air layer[J]. Atmospheric Environment, 2016, 133: 49-59.
|
111 |
CONWAY T M, JOHN S G. Quantification of dissolved iron sources to the north Atlantic Ocean[J]. Nature, 2014, 511(7 508): 212-215.
|
112 |
MAMUN A, CHEN Y S, LIANG J Y. Radiative and cloud microphysical effects of the Saharan dust simulated by the WRF-Chem model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 219. DOI: 10.1016/j.jastp.2021.105646 .
|
113 |
di MAURO B, GARZONIO R, ROSSINI M, et al. Saharan dust events in the European Alps: role in snowmelt and geochemical characterization[J]. The Cryosphere, 2019, 13(4): 1 147-1 165.
|
114 |
DUMONT M, TUZET F, GASCOIN S, et al. Accelerated snow melt in the Russian Caucasus Mountains after the Saharan dust outbreak in March 2018[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(9). DOI: 10.1029/2020JF005641 .
|
115 |
FRANCIS D, FONSECA R, NELLI N, et al. Atmospheric rivers drive exceptional Saharan dust transport towards Europe[J]. Atmospheric Research, 2022, 266. DOI: 10.1016/j.atmosres.2021.105959 .
|
116 |
SZUSZKIEWICZ M M, ŁUKASIK A, PETROVSKÝ E, et al. Magneto-chemical characterisation of Saharan dust deposited on snow in Poland[J]. Environmental Research, 2023, 216(Pt 2). DOI: 10.1016/j.envres.2022.114605 .
|
117 |
DEMOTT P J, SASSEN K, POELLOT M R, et al. African dust aerosols as atmospheric ice nuclei[J]. Geophysical Research Letters, 2003, 30(14). DOI: 10.1029/2003GL017410 .
|
118 |
SASSEN K, DEMOTT P J, PROSPERO J M, et al. Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results[J]. Geophysical Research Letters, 2003, 30(12). DOI: 10.1029/2003GL017371 .
|
119 |
CREAMEAN J M, SUSKI K J, ROSENFELD D, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S[J]. Science, 2013, 339(6 127): 1 572-1 578.
|
120 |
HU Z Y, ZHAO C, LEUNG L R, et al. Characterizing the impact of atmospheric rivers on aerosols in the western U.S[J]. Geophysical Research Letters, 2022, 49(7). DOI: 10.1029/2021GL096421 .
|
121 |
LEUNG L R, QIAN Y. Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model[J]. Geophysical Research Letters, 2009, 36(3). DOI:10.1029/2008GL036445 .
|
122 |
ADHIKARI P, MEJIA J F. Impact of transported dust aerosols on precipitation over the Nepal Himalayas using convection-permitting WRF-Chem simulation[J]. Atmospheric Environment: X, 2022, 15. DOI:10.1016/j.aeaoa.2022.100179 .
|
123 |
ZHANG Z X, ZHOU W, WENIG M, et al. Impact of long-range desert dust transport on hydrometeor formation over coastal East Asia[J]. Advances in Atmospheric Sciences, 2017, 34(1): 101-115.
|
124 |
ASUTOSH A, VINOJ V, MURUKESH N, et al. Investigation of June 2020 giant Saharan dust storm using remote sensing observations and model reanalysis[J]. Scientific Reports, 2022, 12(1). DOI: 10.1038/s41598-022-10017-1 .
|