地球科学进展 ›› 2025, Vol. 40 ›› Issue (1): 1 -14. doi: 10.11867/j.issn.1001-8166.2025.004

大气海洋 上一篇    下一篇

非洲沙尘东传的规律及其气候环境效应
黄忠伟1,2(), 刘千滔1, 董青青1, 胡志远3, 张笑琳4, 李正鹏1, 王雍恺1   
  1. 1.兰州大学 大气科学学院 教育部干旱气候变化重点实验室,甘肃 兰州 730000
    2.兰州大学 西部生态安全省部协同创新中心,甘肃 兰州 730000
    3.中山大学 大气科学学院,广东 珠海 519082
    4.英国帝国理工学院,英国 伦敦 SW72AZ
  • 收稿日期:2024-12-08 修回日期:2024-12-25 出版日期:2025-01-10
  • 基金资助:
    国家自然科学基金项目(W2411029);甘肃省科技重大专项(24ZDWA006)

Eastward Transport of African Dust and Its Climatic and Environmental Impacts

Zhongwei HUANG1,2(), Qiantao LIU1, Qingqing DONG1, Zhiyuan HU3, Xiaolin ZHANG4, Zhengpeng LI1, Yongkai WANG1   

  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
    2.Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
    3.School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China
    4.Imperial College London, London SW72AZ, United Kingdom
  • Received:2024-12-08 Revised:2024-12-25 Online:2025-01-10 Published:2025-03-24
  • About author:HUANG Zhongwei, research areas include atmospheric remote sensing, aerosol detection and its climate effect research. E-mail: huangzhongwei@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(W2411029);Gansu Province Key Project of Science and Technology(24ZDWA006)

非洲撒哈拉沙漠作为世界最大的沙漠地区,排放的沙尘占全球沙尘总量的50%~60%,对区域乃至全球气候、环境和生态系统均有重要影响。长期以来,国内外学者研究发现撒哈拉沙尘存在2条主要传输路径:向西跨越北大西洋抵达北美,或向北传输至欧洲大陆。近年来,部分研究发现撒哈拉沙尘还可横跨中东、中亚向东远距离(近10 000 km)跨境输送至东亚地区,这是撒哈拉沙尘的第3条传输路径。因此,主要总结了国内外对撒哈拉沙尘传输至东亚的规律及其影响的研究进展,包括撒哈拉沙尘理化特性、起沙机制、传输机理及气候环境效应等方面;未来需加强研究全球变暖下撒哈拉沙尘跨境东传机制及其气候环境生态效应。

As the largest desert in the world, the Sahara Desert emits dust aerosols, accounting for 50%~60% of the global total dust, exerting significant impacts on regional and even global climate, environment, and ecosystems. Previous domestic and international studies reported two primary transport pathways for Saharan dust: westward across the North Atlantic, reaching North America, or northward to the European continent. In recent years, studies have shown that Saharan dust can be transported across the Middle East and Central Asia, undergoing long-distance (nearly 10 000 km) to East Asia, which is the third transport pathway for Saharan dust. Therefore, this study primarily summarizes the research progress on the long-range transport of Saharan dust to East Asia and its impacts, including the physical and chemical properties of Saharan dust, dust emission mechanisms, transport processes, and climatic and environmental effects. Finally, we highlight the current challenges in the research on the eastward transport of Saharan dust and provide suggestions and ideas for future research.

中图分类号: 

图1 全球沙尘带及主要沙漠的地理分布
Fig. 1 Distribution of global dust belt and major deserts over the world
图2 基于飞机观测获得的撒哈拉新鲜沙尘、老化沙尘以及大西洋上空撒哈拉沙尘的有效直径和550 nm处光学特性的垂直分布50
Fig. 2 Effective diameter of fresh dustaged dustand the Saharan dust layer over the adjacent eastern Atlantic and vertical distributions of optical properties at 550 nm50
图3 全球不同沙漠地区沙尘中赤铁矿和针铁矿的平均体积分数55
黑点和蓝点表示每种情况下不同沙漠沙尘在443 nm波段的平均气溶胶光学厚度和单次散射反照率
Fig. 3 Average volume fractions of hematite and goethite in dust from different deserts55
Black and blue points represent the corresponding average Aerosol Optical Depth (AOD) at 443 nm and Single Scattering Albedo (SSA) for each case of dust from different deserts
图4 基于CALIPSOHYSPLIT追踪20174月东亚沙尘事件中非洲沙尘的远距离输送
Fig. 4 Tracking long-range transport of African dust during the April 2017 East Asian dust event based on CALIPSO and HYSPLIT trajectory model
图5 基于地基激光雷达与WRF-Chem模式研究20124月敦煌沙尘事件中北非—中东沙尘跨境传输机制及贡献101
Fig. 5 Study on the mechanism and contribution of North Africa-Middle East dust transboundary transport in the April 2012 Dunhuang dust event based on ground-based lidar and WRF-Chem models101
图6 基于WRF-Chem模式模拟定量20102015年不同季节撒哈拉沙尘含量与500 hPa风场空间分布102
Fig. 6 Spatial distributions of Saharan dust mass loading and wind field at 500 hPa for four seasons during the period of 2010-2015derived from WRF-Chem simulations102
图7 基于WRF-Chem模式模拟定量20102015年不同季节我国华北地区不同沙尘源贡献量垂直分布102
lg指对数转换
Fig. 7 Vertical distribution of Sahara dust concentration from different dust sources in North China in different seasons from 2010 to 2015derived from WRF-Chem simulations102
lg is converted to logarithm
图8 撒哈拉沙尘向东远距离传输至东亚地区的路径及其影响示意图
Fig. 8 Schematic diagram of the impact of long-range transported Saharan dust on climateenvironment as well as ecosystem in East Asia
1 LIU J, WANG X F, WU D Y, et al. Historical footprints and future projections of global dust burden from bias-corrected CMIP6 models[J]. NPJ Climate and Atmospheric Science20247: 1-12.
2 KOK J F, STORELVMO T, KARYDIS V A, et al. Mineral dust aerosol impacts on global climate and climate change[J]. Nature Reviews Earth & Environment20234: 71-86.
3 LIU Yonggang, ZHANG Ming, LIN Qifan, et al. Variation of atmospheric dust loading and its climate impacts in different geological periods[J]. Earth Science Frontiers202229(5): 285-299.
刘永岗, 张铭, 林琪凡, 等. 古气候中的沙尘变化及其气候影响[J]. 地学前缘202229(5): 285-299.
4 SHE Feng, TAO Yan. Impact of sand and dust weather on atmospheric environment and human health[J]. City and Disaster Reduction2015(4): 8-11.
佘峰, 陶燕. 沙尘天气对大气环境和人体健康的影响[J]. 城市与减灾2015(4): 8-11.
5 GLIß J, MORTIER A, SCHULZ M, et al. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations[J]. Atmospheric Chemistry and Physics202121(1): 87-128.
6 KOK J F, RIDLEY D A, ZHOU Q, et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance[J]. Nature Geoscience201710: 274-278.
7 KOK J F, ADEBIYI A A, ALBANI S, et al. Contribution of the world’s main dust source regions to the global cycle of desert dust[J]. Atmospheric Chemistry and Physics202121(10): 8 169-8 193.
8 BULLARD J E, BADDOCK M, BRADWELL T, et al. High-latitude dust in the Earth system[J]. Reviews of Geophysics201654(2): 447-485.
9 WANG N, ZHANG Y Y. Long-term variations of global dust emissions and climate control[J]. Environmental Pollution2024, 340(Pt 1). DOI: 10.1016/j.envpol.2023.122847 .
10 CHOOBARI O A, ZAWAR-REZA P, STURMAN A. The global distribution of mineral dust and its impacts on the climate system: a review[J]. Atmospheric Research2014138: 152-165.
11 UNO I, EGUCHI K, YUMIMOTO K, et al. Asian dust transported one full circuit around theglobe[J]. Nature Geoscience20092: 557-560.
12 CHTIOUI H, BOUCHLAGHEM K, HICHEM G M. Identification and assessment of intense African dust events and contribution to PM10 concentration in Tunisia[J]. The European Physical Journal Plus2019134 134(575):1-10.
13 TOBÍAS A, PÉREZ L, DÍAZ J, et al. Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain)[J]. Science of the Total Environment2011412/413: 386-389.
14 YU H B, REMER L A, CHIN M, et al. A satellite-based assessment of transpacific transport of pollution aerosol[J]. Journal of Geophysical Research: Atmospheres2008113(D14). DOI: 10.1029/2007JD009349 .
15 HUANG J, LI Y, FU C, et al. Dryland climate change: recent progress and challenges[J]. Reviews of Geophysics201755(3): 719-778.
16 WAGNER F, BORTOLI D, PEREIRA S, et al. Properties of dust aerosol particles transported to Portugal from the Sahara desert[J]. Tellus B200961(1): 297-306.
17 HUANG J, FU Q, SU J, et al. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J]. Atmospheric Chemistry and Physics20099(12): 4 011-4 021.
18 BI H R, CHEN S Y, ZHANG D Z, et al. The circumglobal transport of massive African dust and its impacts on the regional circulation in remote atmosphere[J]. Bulletin of the American Meteorological Society2023105(3): E605-E622.
19 CHEN Y, CHEN S Y, ZHOU J, et al. A super dust storm enhanced by radiative feedback[J]. NPJ Climate and Atmospheric Science2023, 6. DOI:10.1038/s41612-023-00418-y .
20 BARR S L, WYLD B, MCQUAID J B, et al. Southern Alaska as a source of atmospheric mineral dust and ice-nucleating particles[J]. Science Advances20239(33). DOI: 10.1126/sciadv.adg3708 .
21 ZHOU R J, YAN T Y, YANG S P, et al. Characteristics of clouds, precipitation, and latent heat in midlatitude frontal system mixed with dust storm from GPM satellite observations and WRF simulations[J]. JUSTC202252(2). DOI:10.52396/JUSTC-2021-0238 .
22 HUANG Weiwei, YANG Jun, LING Shibing, et al. Effects of the heterogeneous-phase chemical processes on mineral aerosols on the growth of cloud droplets[J]. Journal of Nanjing Institute of Meteorology200730(2): 210-215.
黄蔚薇, 杨军, 凌士兵, 等. 沙尘气溶胶粒子表面变性对云滴形成过程的影响[J]. 南京气象学院学报200730(2): 210-215.
23 ALBRECHT B A. Aerosols, cloud microphysics, and fractional cloudiness[J]. Science1989245(4 923): 1 227-1 230.
24 TELLER A, XUE L, LEVIN Z. The effects of mineral dust particles, aerosol regeneration and ice nucleation parameterizations on clouds and precipitation[J]. Atmospheric Chemistry and Physics201212(19): 9 303-9 320.
25 HUANG Z W, YU X R, LIU Q T, et al. Bioaerosols in the atmosphere: a comprehensive review on detection methods, concentration and influencing factors[J]. Science of the Total Environment2024, 912. DOI: 10.1016/j.scitotenv.2023.168818 .
26 SHI Guangyu, TAN Saichun, CHEN Bin. Environmental and climatic effects of mineral dust and bioaerosol[J]. Chinese Journal of Atmospheric Sciences201842(3): 559-569.
石广玉, 檀赛春, 陈彬. 沙尘和生物气溶胶的环境和气候效应[J]. 大气科学201842(3): 559-569.
27 QI Jianhua, LI Mengzhe, GAO Dongmei, et al. Impact of dust events on the concentration, property and distribution of atmospheric bioaerosols[J]. Advances in Earth Science201833(6): 568-577.
祁建华, 李孟哲, 高冬梅, 等. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展201833(6): 568-577.
28 LI Sheng, WANG Jinyu, LI Pu, et al. Health effects and mechanisms of dust weather on human respiratory system: a review of recent studies[J]. Journal of Environment and Health201936(1): 78-82.
李盛, 王金玉, 李普, 等. 沙尘天气的呼吸系统健康效应及机制研究进展[J]. 环境与健康杂志201936(1): 78-82.
29 SUN Zhaobin, AN Xingqin, CUI Mengmeng, et al. The effect of PM2.5 and PM10 on cardiovascular and cerebrovascular diseases admission visitors in Beijing areas during dust weather, non-dust weather and haze pollution[J]. China Environmental Science201636(8): 2 536-2 544.
孙兆彬, 安兴琴, 崔甍甍, 等. 北京地区颗粒物健康效应研究: 沙尘天气、非沙尘天气下颗粒物(PM2.5、PM10)对心血管疾病入院人次的影响[J]. 中国环境科学201636(8): 2 536-2 544.
30 ZHANG C, YAN M L, DU H, et al. Mortality risks from a spectrum of causes associated with sand and dust storms in China[J]. Nature Communications202314(1). DOI: 10.1038/s41467-023-42530-w .
31 MEINANDER O, DAGSSON-WALDHAUSEROVA P, AMOSOV P, et al. Newly identified climatically and environmentally significant high-latitude dust sources[J]. Atmospheric Chemistry and Physics202222(17): 11 889-11 930.
32 SARANGI C, QIAN Y, RITTGER K, et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia[J]. Nature Climate Change202010: 1 045-1 051.
33 RÉVEILLET M, DUMONT M, GASCOIN S, et al. Black carbon and dust alter the response of mountain snow cover under climate change[J]. Nature Communications2022, 13. DOI:10.21203/rs.3.rs-800501/v1 .
34 YANG Tao, GUO Lingpeng, HUANG Farong, et al. Influence of dust on snowpack in the Tianshan Mountains[J]. Arid Zone Research201835(1): 122-129.
杨涛, 郭玲鹏, 黄法融, 等. 沙尘对天山积雪消融的影响[J]. 干旱区研究201835(1): 122-129.
35 DING Yanan, NA Hong, QI Jianhua. Effects of iron and copper in Asian dust on dominant bacterioplankton abundance in the surface of the Yellow Sea[J]. Periodical of Ocean University of China202353(11): 99-110.
丁雅楠, 那红, 祁建华. 亚洲沙尘中铁、铜对黄海近海表层优势浮游细菌丰度影响的模拟研究[J]. 中国海洋大学学报(自然科学版)202353(11): 99-110.
36 LIU Chang, MAO Zhihua, CHEN Huanhuan, et al. Responses of marine primary production caused by deposition of typical natural aerosols[J]. Oceanologia et Limnologia Sinica202455(2): 363-374.
刘畅, 毛志华, 陈焕焕, 等. 典型自然源气溶胶沉降引起的海洋初级生产响应[J]. 海洋与湖沼202455(2): 363-374.
37 WESTBERRY T K, BEHRENFELD M J, SHI Y R, et al. Atmospheric nourishment of global ocean ecosystems[J]. Science2023380(6 644): 515-519.
38 CHEN Yao, LU Huayu, WU Huijuan, et al. Global desert variation under climatic impact during 1982-2020[J]. Science China: Earth Sciences202366(5): 1 062-1 071.
陈瑶, 鹿化煜, 吴会娟, 等. 全球沙漠变化的气候影响[J]. 中国科学: 地球科学202353(5): 1 057-1 066.
39 PU B, JIN Q J. A record-breaking trans-Atlantic African dust plume associated with atmospheric circulation extremes in June 2020[J]. Bulletin of the American Meteorological Society102(7): E1340-E1356.
40 YU H B, TAN Q, ZHOU L, et al. Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020[J]. Atmospheric Chemistry and Physics202121(16): 12 359-12 383.
41 PU B, JIN Q J. The “godzilla” dust plume: record-breaking African dust swept Atlantic in 2020[J]. Bulletin of the American Meteorological Society2023104(1): 38-42.
42 HEINTZENBERG J. The SAMUM-1 experiment over southern Morocco: overview and introduction[J]. Tellus B200961(1): 2-11.
43 WEINZIERL B, PETZOLD A, ESSELBORN M, et al. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006[J]. Tellus B200961(1): 96-117.
44 KANDLER K, SCHÜTZ L, DEUTSCHER C, et al. Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006[J]. Tellus B200961(1): 32-50.
45 KAADEN N, MASSLING A, SCHLADITZ A, et al. State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco[J]. Tellus B200961(1): 51-63.
46 TESCHE M, ANSMANN A, MÜLLER D, et al. Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM[J]. Tellus B200961(1): 144-164.
47 ESSELBORN M, WIRTH M, FIX A, et al. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006[J]. Tellus B200961(1): 131-143.
48 FREUDENTHALER V, ESSELBORN M, WIEGNER M, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus B: Chemical and Physical Meteorology61(1): 165-179.
49 von HOYNINGEN-HUENE W, DINTER T, KOKHANOVSKY A A, et al. Measurements of desert dust optical characteristics at Porte au Sahara during SAMUM[J]. Tellus B200961(1): 206-215.
50 RYDER C L, HIGHWOOD E J, LAI T M, et al. Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust[J]. Geophysical Research Letters201340(10): 2 433-2 438.
51 VARGA G, DAGSSON-WALDHAUSEROVÁ P, GRESINA F, et al. Saharan dust and giant quartz particle transport towards Iceland[J]. Scientific Reports202111(1). DOI: 10.1038/s41598-021-91481-z .
52 ANSMANN A, BÖSENBERG J, CHAIKOVSKY A, et al. Long-range transport of Saharan dust to northern Europe: the 11-16 October 2001 outbreak observed with EARLINET[J]. Journal of Geophysical Research: Atmospheres2003108(D24). DOI: 10.1029/2003JD003757 .
53 CHEN W N, TSAI F J, CHOU C C, et al. Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan [J]. Atmospheric Environment200741(36): 7 698-7 714.
54 MÜLLER D, MATTIS I, WANDINGER U, et al. Saharan dust over a central European EARLINET-AERONET site: combined observations with Raman lidar and Sun photometer[J]. Journal of Geophysical Research: Atmospheres2003108(D12). DOI: 10.1029/2002JD002918 .
55 NISANTZI A, MAMOURI R E, ANSMANN A, et al. Middle East versus Saharan dust extinction-to-backscatter ratios[J]. Atmospheric Chemistry and Physics201515(12): 7 071-7 084.
56 SCHUSTER G L, VAUGHAN M, MACDONNELL D, et al. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust[J]. Atmospheric Chemistry and Physics201212(16): 7 431-7 452.
57 GO S, LYAPUSTIN A, SCHUSTER G L, et al. Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations[J]. Atmospheric Chemistry and Physics202222(2): 1 395-1 423.
58 EVAN A T, FIEDLER S, ZHAO C, et al. Derivation of an observation-based map of north African dust emission[J]. Aeolian Research201516: 153-162.
59 TINDAN J Z, JIN Q J, PU B. Understanding day-night differences in dust aerosols over the dust belt of North Africa, the Middle East, and Asia[J]. Atmospheric Chemistry and Physics202323(9): 5 435-5 466.
60 MBOUROU G N, BERTRAND J J, NICHOLSON S E. The diurnal and seasonal cycles of wind-borne dust over Africa north of the equator[J]. Journal of Applied Meteorology199736(7): 868-882.
61 ENGELSTAEDTER S, TEGEN I, WASHINGTON R. North African dust emissions and transport[J]. Earth-Science Reviews200679(1/2): 73-100.
62 TODD M C, WASHINGTON R, RAGHAVAN S, et al. Regional model simulations of the bodélé low-level jet of northern Chad during the bodélé dust experiment (BoDEx 2005)[J]. Journal of Climate200821(5): 995-1 012.
63 GAMO M. Thickness of the dry convection and large-scale subsidence above deserts[J]. Boundary-Layer Meteorology199679(3): 265-278.
64 CUESTA J, FLAMANT C, GAETANI M, et al. Three-dimensional pathways of dust over the Sahara during summer 2011 as revealed by new infrared atmospheric sounding interferometer observations[J]. Quarterly Journal of the Royal Meteorological Society2020146(731): 2 731-2 755.
65 ALPERT P, ZIV B. The sharav cyclone: observations and some theoretical considerations[J]. Journal of Geophysical Research: Atmospheres198994(D15): 18 495-18 514.
66 KARAM D B, FLAMANT C, CUESTA J, et al. Dust emission and transport associated with a Saharan depression: February 2007 case[J]. Journal of Geophysical Research: Atmospheres2010115(D4). DOI: 10.1029/2009JD012390 .
67 KNIPPERTZ P, TODD M C. Mineral dust aerosols over the Sahara: meteorological controls on emission and transport and implications for modeling[J]. Reviews of Geophysics201250(1). DOI: 10.1029/2011RG000362 .
68 KNIPPERTZ P, DEUTSCHER C, KANDLER K, et al. Dust mobilization due to density currents in the Atlas region: observations from the Saharan mineral dust experiment 2006 field campaign[J]. Journal of Geophysical Research: Atmospheres2007112(D21). DOI: 10.1029/2007JD008774 .
69 EMMEL C, KNIPPERTZ P, SCHULZ O. Climatology of convective density currents in the southern foothills of the Atlas Mountains[J]. Journal of Geophysical Research: Atmospheres2010115(D11). DOI:10.1029/2009JD012863 .
70 ALLEN C J T, WASHINGTON R. The low-level jet dust emission mechanism in the central Sahara: observations from Bordj-Badji Mokhtar during the June 2011 Fennec intensive observation period[J]. Journal of Geophysical Research: Atmospheres2014119(6): 2 990-3 015.
71 CATON H T, WASHINGTON R, ENGELSTAEDTER S. A 14-year climatology of Saharan dust emission mechanisms inferred from automatically tracked plumes[J]. Journal of Geophysical Research: Atmospheres2019124(16): 9 665-9 690.
72 KOCH J, RENNO N O. The role of convective plumes and vortices on the global aerosol budget[J]. Geophysical Research Letters200532(18). DOI: 10.1029/2005GL023420 .
73 ANSMANN A, TESCHE M, KNIPPERTZ P, et al. Vertical profiling of convective dust plumes in southern Morocco during SAMUM[J]. Tellus B200961(1): 340-353.
74 CUEVAS E, GÓMEZ-PELÁEZ A J, RODRÍGUEZ S, et al. The pulsating nature of large-scale Saharan dust transport as a result of interplays between mid-latitude Rossby waves and the North African Dipole Intensity[J]. Atmospheric Environment2017167: 586-602.
75 WANG W J, EVAN A T, LAVAYSSE C, et al. The role the Saharan heat low plays in dust emission and transport during summertime in North Africa[J]. Aeolian Research201728: 1-12.
76 ENGELSTAEDTER S, WASHINGTON R. Atmospheric controls on the annual cycle of North African dust[J]. Journal of Geophysical Research: Atmospheres2007112(D3). DOI: 10.1029/2006JD007195 .
77 WILLIAMS E R. Comment on “Atmospheric controls on the annual cycle of North African dust” by S. Engelstaedter and R. Washington[J]. Journal of Geophysical Research: Atmospheres2008113(D23). DOI:10.1029/2006JD007195 .
78 ADAMS A M, PROSPERO J M, ZHANG C D. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents[J]. Journal of Climate201225(19): 6 862-6 879.
79 JONES C, MAHOWALD N, LUO C. The role of easterly waves on African desert dust transport[J]. Journal of Climate200316(22): 3 617-3 628.
80 JONES C, MAHOWALD N, LUO C. Observational evidence of African desert dust intensification of easterly waves[J]. Geophysical Research Letters200431(17). DOI: 10.1029/2004GL020107 .
81 BERCOS-HICKEY E, NATHAN T R, CHEN S H. On the relationship between the African easterly jet, Saharan mineral dust aerosols, and west African precipitation[J]. Journal of Climate201833(9): 3 533-3 546.
82 DOHERTY O M, RIEMER N, HAMEED S. Saharan mineral dust transport into the Caribbean: observed atmospheric controls and trends[J]. Journal of Geophysical Research: Atmospheres2008113(D7). DOI:10.1029/2007JD009171 .
83 LI W, WANG Y X. Reduced surface fine dust under droughts over the southeastern United States during summertime: observations and CMIP6 model simulations[J]. Atmospheric Chemistry and Physics202222(12): 7 843-7 859.
84 MOULIN C, LAMBERT C E, DULAC F, et al. Control of atmospheric export of dust from north Africa by the north Atlantic oscillation[J]. Nature1997387: 691-694.
85 RAMÍREZ-ROMERO C, JARAMILLO A, CÓRDOBA M F, et al. African dust particles over the western Caribbean-part I: impact on air quality over the yucatán peninsula[J]. Atmospheric Chemistry and Physics202121(1): 239-253.
86 KUTUZOV S, SHAHGEDANOVA M, MIKHALENKO V, et al. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009-2012 using snow pit and firn core records[J]. The Cryosphere20137(5): 1 481-1 498.
87 VARGA G. Changing nature of Saharan dust deposition in the Carpathian basin (central Europe): 40 years of identified north African dust events (1979-2018)[J]. Environment International2020, 139. DOI: 10.1016/j.envint.2020.105712 .
88 HU Z Y, HUANG J P, ZHAO C, et al. Trans-Pacific transport and evolution of aerosols: spatiotemporal characteristics and source contributions[J]. Atmospheric Chemistry and Physics201919(19): 12 709-12 730.
89 HU Z Y, HUANG J P, ZHAO C, et al. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics202020(3): 1 507-1 529.
90 HU Z Y, HUANG J P, ZHAO C, et al. Modeling the contributions of Northern Hemisphere dust sources to dust outflow from East Asia[J]. Atmospheric Environment2019202: 234-243.
91 MCKENDRY I G, STRAWBRIDGE K B, O’NEILL N T, et al. Trans-Pacific transport of Saharan dust to western North America: a case study[J]. Journal of Geophysical Research: Atmospheres2007112(D1). DOI: 10.1029/2006JD007129 .
92 AWAD A M, MASHAT A S. Synoptic features associated with dust transition processes from North Africa to Asia[J]. Arabian Journal of Geosciences20147(6): 2 451-2 467.
93 YANG K, WANG Z E, LUO T, et al. Upper troposphere dust belt formation processes vary seasonally and spatially in the Northern Hemisphere[J]. Communications Earth & Environment2022, 3. DOI: 10.1038/s43247-022-00353-5 .
94 KAUFMAN Y J, TANRÉ D, BOUCHER O. A satellite view of aerosols in the climate system[J]. Nature2002419(6 903): 215-223.
95 KAUFMAN Y J, KOREN I, REMER L A, et al. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean[J]. Journal of Geophysical Research: Atmospheres2005110(D10). DOI: 10.1029/2003JD004436 .
96 HUANG Yue, CHEN Bin, DONG Li, et al. Analysis of a dust weather process over east Asia in May 2019 based on satellite and ground-based lidar[J]. Chinese Journal of Atmospheric Sciences202145(3): 524-538.
黄悦, 陈斌, 董莉, 等. 利用星载和地基激光雷达分析2019年5月东亚沙尘天气过程[J]. 大气科学202145(3): 524-538.
97 BONG P C, SUGIMOTO N, MATSUI I, et al. Long-range transport of Saharan dust to east Asia observed with lidars[J]. Sola20051: 121-124.
98 TANAKA T Y, KUROSAKI Y, CHIBA M, et al. Possible transcontinental dust transport from north Africa and the middle east to east Asia[J]. Atmospheric Environment200539(21): 3 901-3 909.
99 LEE H N, IGARASHI Y, CHIBA M, et al. Global model simulations of the transport of Asian and Sahara dust: total deposition of dust mass in Japan[J]. Water, Air, and Soil Pollution2006169(1): 137-166.
100 HSU S C, HUH C A, LIN C Y, et al. Dust transport from non-east Asian sources to the north Pacific[J]. Geophysical Research Letters201239(12). DOI: 10.1029/2012GL051962 .
101 ZHOU T, ZHOU X W, YANG Z N, et al. Transboundary transport of non-east and East Asian dust observed at Dunhuang, northwest China[J]. Atmospheric Environment2024, 318. DOI: 10.1016/j.atmosenv.2023.120197 .
102 LIU Q T, HUANG Z W, HU Z Y, et al. Long-range transport and evolution of Saharan dust over east Asia from 2007 to 2020[J]. Journal of Geophysical Research: Atmospheres2022127(18). DOI:10.1029/2022JD036974 .
103 MAO R, HU Z Y, ZHAO C, et al. The source contributions to the dust over the Tibetan Plateau: a modelling analysis[J]. Atmospheric Environment2019, 214. DOI:10.1016/j.atmosenv.2019.116859 .
104 ODUBER F, CALVO A I, BLANCO-ALEGRE C, et al. Unusual winter Saharan dust intrusions at northwest Spain: air quality, radiative and health impacts[J]. Science of the Total Environment2019669: 213-228.
105 GINI M, MANOUSAKAS M, KARYDAS A G, et al. Mass size distributions, composition and dose estimates of particulate matter in Saharan dust outbreaks[J]. Environmental Pollution2022, 298. DOI: 10.1016/j.envpol.2021.118768 .
106 SCHLESINGER P, MAMANE Y, GRISHKAN I. Transport of microorganisms to Israel during Saharan dust events[J]. Aerobiologia200622(4): 259-273.
107 KORTE L F, PAUSCH F, TRIMBORN S, et al. Effects of dry and wet Saharan dust deposition in the tropical North Atlantic Ocean[J]. Biogeosciences Discussions2018. DOI:10.5194/bg-2018-484 .
108 YU H B, CHIN M, YUAN T L, et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations[J]. Geophysical Research Letters201542(6): 1 984-1 991.
109 GALLISAI R, PETERS F, VOLPE G, et al. Saharan dust deposition may affect phytoplankton growth in the Mediterranean Sea at ecological time scales[J]. PLoS ONE20149(10). DOI: 10.1371/journal.pone.0110762 .
110 RAVELO-PÉREZ L M, RODRÍGUEZ S, GALINDO L, et al. Soluble iron dust export in the high altitude Saharan air layer[J]. Atmospheric Environment2016133: 49-59.
111 CONWAY T M, JOHN S G. Quantification of dissolved iron sources to the north Atlantic Ocean[J]. Nature2014511(7 508): 212-215.
112 MAMUN A, CHEN Y S, LIANG J Y. Radiative and cloud microphysical effects of the Saharan dust simulated by the WRF-Chem model[J]. Journal of Atmospheric and Solar-Terrestrial Physics2021, 219. DOI: 10.1016/j.jastp.2021.105646 .
113 di MAURO B, GARZONIO R, ROSSINI M, et al. Saharan dust events in the European Alps: role in snowmelt and geochemical characterization[J]. The Cryosphere201913(4): 1 147-1 165.
114 DUMONT M, TUZET F, GASCOIN S, et al. Accelerated snow melt in the Russian Caucasus Mountains after the Saharan dust outbreak in March 2018[J]. Journal of Geophysical Research: Earth Surface2020125(9). DOI: 10.1029/2020JF005641 .
115 FRANCIS D, FONSECA R, NELLI N, et al. Atmospheric rivers drive exceptional Saharan dust transport towards Europe[J]. Atmospheric Research2022, 266. DOI: 10.1016/j.atmosres.2021.105959 .
116 SZUSZKIEWICZ M M, ŁUKASIK A, PETROVSKÝ E, et al. Magneto-chemical characterisation of Saharan dust deposited on snow in Poland[J]. Environmental Research2023, 216(Pt 2). DOI: 10.1016/j.envres.2022.114605 .
117 DEMOTT P J, SASSEN K, POELLOT M R, et al. African dust aerosols as atmospheric ice nuclei[J]. Geophysical Research Letters200330(14). DOI: 10.1029/2003GL017410 .
118 SASSEN K, DEMOTT P J, PROSPERO J M, et al. Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results[J]. Geophysical Research Letters200330(12). DOI: 10.1029/2003GL017371 .
119 CREAMEAN J M, SUSKI K J, ROSENFELD D, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S[J]. Science2013339(6 127): 1 572-1 578.
120 HU Z Y, ZHAO C, LEUNG L R, et al. Characterizing the impact of atmospheric rivers on aerosols in the western U.S[J]. Geophysical Research Letters202249(7). DOI: 10.1029/2021GL096421 .
121 LEUNG L R, QIAN Y. Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model[J]. Geophysical Research Letters200936(3). DOI:10.1029/2008GL036445 .
122 ADHIKARI P, MEJIA J F. Impact of transported dust aerosols on precipitation over the Nepal Himalayas using convection-permitting WRF-Chem simulation[J]. Atmospheric Environment: X, 2022, 15. DOI:10.1016/j.aeaoa.2022.100179 .
123 ZHANG Z X, ZHOU W, WENIG M, et al. Impact of long-range desert dust transport on hydrometeor formation over coastal East Asia[J]. Advances in Atmospheric Sciences201734(1): 101-115.
124 ASUTOSH A, VINOJ V, MURUKESH N, et al. Investigation of June 2020 giant Saharan dust storm using remote sensing observations and model reanalysis[J]. Scientific Reports202212(1). DOI: 10.1038/s41598-022-10017-1 .
[1] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[2] 蒋俊霞,杨丽薇,李振朝,高晓清. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019, 34(10): 1038-1049.
[3] 马耀明, 胡泽勇, 田立德, 张凡, 段安民, 阳坤, 张镱锂, 杨永平. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
[4] 胡娅敏,丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
[5] 黄毅;毛节泰;王美华. 用GMS-5对东亚地区对流层高层水汽的研究[J]. 地球科学进展, 2004, 19(5): 754-760.
阅读次数
全文


摘要