1 |
SMITH B T, THOMPSON R L, GRAMS J S, et al. Convective modes for significant severe thunderstorms in the contiguous United States. part I: storm classification and climatology[J]. Weather and Forecasting, 2012, 27(5): 1 114-1 135.
|
2 |
JOHNS R H, HIRT W D. Derechos: widespread convectively induced windstorms[J]. Weather and Forecasting, 1987, 2(1): 32-49.
|
3 |
PACEY G P, SCHULTZ D M, GARCIA-CARRERAS L. Severe convective windstorms in Europe: climatology, preconvective environments, and convective mode[J]. Weather and Forecasting, 2021, 36(1): 237-252.
|
4 |
YU Xiaoding, ZHENG Yongguang. Advances in severe convective weather research and operational service in China [J]. Acta Meteorologica Sinica,2020, 78(3): 391-418.
|
|
俞小鼎, 郑永光. 中国当代强对流天气研究与业务进展[J].气象学报,2020, 78(3): 391-418.
|
5 |
MENG Z Y, YAO D, BAI L Q, et al. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations[J]. Science Bulletin, 2016, 61(4): 330-337.
|
6 |
ZHENG Yongguang, TIAN Fuyou, MENG Zhiyong, et al. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship “Dongfangzhixing”[J]. Meteorological Monthly, 2016, 42(1): 1-13.
|
|
郑永光, 田付友, 孟智勇, 等. “东方之星” 客轮翻沉事件周边区域风灾现场调查与多尺度特征分析[J]. 气象, 2016, 42(1): 1-13.
|
7 |
SHENG Jie, ZHENG Yongguang, SHEN Xinyong, et al. Evolution and mechanism of a rare squall line in early spring of 2018[J]. Meteorological Monthly, 2019, 45(2): 141-154.
|
|
盛杰, 郑永光, 沈新勇, 等. 2018年一次罕见早春飑线大风过程演变和机理分析[J]. 气象, 2019, 45(2): 141-154.
|
8 |
HOU Shumei, LI Yuwei, ZHANG Peng, et al. Cause of a thunderstorm gale event over grade 10 along the Shandong coast on 29 April 2021[J]. Meteorological Monthly, 2022, 48(10): 1 242-1 256.
|
|
侯淑梅,李昱薇,张鹏,等. “4.29”山东近海10级以上雷暴大风的成因分析[J]. 气象, 2022, 48(10): 1 242-1 256.
|
9 |
KELLY D L, SCHAEFER J T, DOSWELL C A III. Climatology of nontornadic severe thunderstorm events in the United States[J]. Monthly Weather Review, 1985, 113(11): 1 997-2 014.
|
10 |
KLIMOWSKI B A, BUNKERS M J, HJELMFELT M R, et al. Severe convective windstorms over the northern high plains of the United States[J]. Weather and Forecasting, 2003, 18(3): 502-519.
|
11 |
SCHOEN J M, ASHLEY W S. A climatology of fatal convective wind events by storm type[J]. Weather and Forecasting, 2011, 26(1): 109-121.
|
12 |
SMITH B T, CASTELLANOS T E, WINTERS A C, et al. Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003-09[J]. Weather and Forecasting, 2013, 28(1): 229-236.
|
13 |
TASZAREK M, ALLEN J T, GROENEMEIJER P, et al. Severe convective storms across Europe and the United States. part I: climatology of lightning, large hail, severe wind, and tornadoes[J]. Journal of Climate, 2020, 33(23): 10 239-10 261.
|
14 |
DOSWELL C A III, BROOKS H E, KAY M P. Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States[J]. Weather and Forecasting, 2005, 20(4): 577-595.
|
15 |
ASHLEY W S, MOTE T L. Derecho hazards in the United States[J]. Bulletin of the American Meteorological Society, 2005, 86(11): 1 577-1 592.
|
16 |
SUROWIECKI A, PILGUJ N, TASZAREK M, et al. Quasi-linear convective systems and derechos across Europe: climatology, accompanying hazards, and societal impacts[J]. Bulletin of the American Meteorological Society, 2024, 105(8): E1619-E1643.
|
17 |
BROWN A, DOWDY A. Severe convection-related winds in Australia and their associated environments[J]. Journal of Southern Hemisphere Earth Systems Science, 2021, 71(1): 30-52.
|
18 |
BROWN A, DOWDY A. Severe convective wind environments and future projected changes in Australia[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16). DOI:10.1029/2021JD034633 .
|
19 |
FEI Haiyan, WANG Xiuming, ZHOU Xiaogang, et al. Climatic characteristics and environmental parameters of severe thunderstorm gales in China[J]. Meteorological Monthly, 2016, 42(12): 1 513-1 521.
|
|
费海燕, 王秀明, 周小刚, 等. 中国强雷暴大风的气候特征和环境参数分析[J]. 气象, 2016, 42(12): 1 513-1 521.
|
20 |
YANG X L, SUN J H, ZHENG Y G. A 5-yr climatology of severe convective wind events over China[J]. Weather and Forecasting, 2017, 32(4): 1 289-1 299.
|
21 |
YANG X L, SUN J H. Organizational modes of severe wind-producing convective systems over North China[J]. Advances in Atmospheric Sciences, 2018, 35(5): 540-549.
|
22 |
MA Shuping, WANG Xiuming, YU Xiaoding. Environmental parameter characteristics of severe wind with extreme thunderstorm[J]. Journal of Applied Meteorological Science, 2019, 30(3): 292-301.
|
|
马淑萍, 王秀明, 俞小鼎. 极端雷暴大风的环境参量特征[J]. 应用气象学报, 2019, 30(3): 292-301.
|
23 |
MA R Y, FENG S L, JIN S L, et al. Statistical characteristics and environmental conditions of the warm-season severe convective events over North China[J]. Atmosphere, 2020, 12(1). DOI:10.3390/atmos12010052 .
|
24 |
CHEN Xiaoxin, YU Xiaoding, WANG Xiuming. Investigation of Derechos in China: spatiotemporal distribution,environmental characteristics,and morphology of Derechos producing convective systems [J]. Acta Meteorologica Sinica,2022, 80(1): 67-81.
|
|
陈晓欣,俞小鼎,王秀明. 中国大范围雷暴大风事件(Derechos)研究:时空分布、环境背景和对流系统形态特征[J].气象学报, 2022, 80(1): 67-81.
|
25 |
YANG X L, SUN J H. The characteristics of cloud-to-ground lightning activity with severe thunderstorm wind in South and North China[J]. Atmospheric and Oceanic Science Letters, 2014, 7(6): 571-576.
|
26 |
ZHOU Kanghui, ZHENG Yongguang, WANG Tingbo, et al. Fuzzy logic algorithm of thunderstorm gale identification using multisource data [J]. Meteorological Monthly, 2017, 43(7): 781-791.
|
|
周康辉, 郑永光, 王婷波, 等. 基于模糊逻辑的雷暴大风和非雷暴大风区分方法[J]. 气象, 2017, 43(7): 781-791.
|
27 |
YANG X L, SUN J H, LUO S. Preconvective environments of severe convective winds over North China and South China[J]. Atmospheric Research, 2024, 304. DOI:10.1016/j.atmosres.2024.107384 .
|
28 |
QIN Li, LI Yaodong, GAO Shouting. The synoptic and climatic characteristic studies of thunderstorm winds in Beijing[J]. Climatic and Environmental Research, 2006, 11(6): 754-762.
|
|
秦丽, 李耀东, 高守亭. 北京地区雷暴大风的天气—气候学特征研究[J]. 气候与环境研究, 2006, 11(6): 754-762.
|
29 |
YANG Xiaoxia, WAN Mingbo, WANG Wenqing, et al. The climatic characteristics of thunderstorm wind events in Shandong Province [J]. Journal of Shandong Meteorology, 2012, 32(4): 16-20.
|
|
杨晓霞, 万明波, 王文青, 等. 山东省雷暴大风天气的气候特征[J]. 山东气象, 2012, 32(4): 16-20.
|
30 |
YU Rong, ZHANG Xiaoling, LI Guoping, et al. Analysis of frequency variation of thunderstorm, hail and gale wind in eastern China from 1971 to 2000 [J]. Meteorological Monthly, 2012, 38(10): 1 207-1 216.
|
|
余蓉, 张小玲, 李国平, 等. 1971—2000年我国东部地区雷暴、冰雹、雷暴大风发生频率的变化[J]. 气象, 2012, 38(10): 1 207-1 216.
|
31 |
YAN Shiyao, LI Yunying, QI Linlin, et al. Analysis and application of thermo-dynamical and dynamical indexes associated with thunderstorm gale in North China[J]. Torrential Rain and Disasters, 2013, 32(1): 17-23.
|
|
严仕尧, 李昀英, 齐琳琳, 等. 华北产生雷暴大风的动力热力综合指标分析及应用[J]. 暴雨灾害, 2013, 32(1): 17-23.
|
32 |
YANG Lei, ZHENG Yongguang. Observational characteristics of thunderstorm gusts in Northeast China and their association with the Northeast China cold vortex[J]. Acta Meteorologica Sinica, 2023, 81(3): 416-429.
|
|
杨磊, 郑永光. 东北地区雷暴大风观测特征及其与东北冷涡的关系研究[J]. 气象学报, 2023, 81(3): 416-429.
|
33 |
GUO Yinglian, SUN Jisong. Characteristics of strong convective wind events caused by three types of convective systems in Hubei Province[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(3): 483-497.
|
|
郭英莲, 孙继松. 湖北三类组织形态强对流系统造成的地面强对流大风特征[J]. 大气科学, 2019, 43(3): 483-497.
|
34 |
HUANG Y, SUN J H, ZHANG Y C, et al. Initiation, organizational modes and environmental conditions of severe convective wind events during the warm season over North China[J]. Science China Earth Sciences, 2024, 67(9): 2 876-2 894.
|
35 |
DIXON M, WIENER G. TITAN: thunderstorm identification, tracking, analysis, and nowcasting—a radar-based methodology[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(6): 785-797.
|
36 |
HABERLIE A M, ASHLEY W S. A method for identifying midlatitude mesoscale convective systems in radar mosaics. part I: segmentation and classification[J]. Journal of Applied Meteorology and Climatology, 2018, 57(7): 1 575-1 598.
|
37 |
HABERLIE A M, ASHLEY W S. A method for identifying midlatitude mesoscale convective systems in radar mosaics. part II: tracking[J]. Journal of Applied Meteorology and Climatology, 2018, 57(7): 1 599-1 621.
|
38 |
MA R Y, SUN J H, YANG X L. A seven-year climatology of the initiation, decay and morphology of severe convective storms during the warm season over North China[J]. Monthly Weather Review, 2021. DOI:10.1175/MWR-D-20-0087.1 .
|
39 |
HABERLIE A M, ASHLEY W S. A radar-based climatology of mesoscale convective systems in the United States[J]. Journal of Climate, 2019, 32(5): 1 591-1 606.
|
40 |
RYZHKOV A V, KUMJIAN M R, GANSON S M, et al. Polarimetric radar characteristics of melting hail. part I: theoretical simulations using spectral microphysical modeling[J]. Journal of Applied Meteorology and Climatology, 2013, 52(12): 2 849-2 870.
|
41 |
CINTINEO J L, PAVOLONIS M J, SIEGLAFF J M, et al. A deep-learning model for automated detection of intense midlatitude convection using geostationary satellite images[J]. Weather and Forecasting, 2020, 35(6): 2 567-2 588.
|
42 |
HUANG Yipeng, LI Wanbiao, ZHAO Yuchun, et al. A review of radar-and satellite-based observational studies and nowcasting techniques on convection initiation[J]. Advances in Earth Science, 2019, 34(12): 1 273-1 287.
|
|
黄亦鹏, 李万彪, 赵玉春, 等. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34(12): 1 273-1 287.
|
43 |
FUJITA T T. Manual of downburst identification for project Nimrod [R]. Satellite and Meso meteorology research paper 156, Department of Geophysical Sciences, University of Chicago, 1978: 104.
|
44 |
GALLUS W A, SNOOK N A, JOHNSON E V. Spring and summer severe weather reports over the midwest as a function of convective mode: a preliminary study[J]. Weather and Forecasting, 2008, 23(1): 101-113.
|
45 |
DUDA J D, GALLUS W A. Spring and summer midwestern severe weather reports in supercells compared to other morphologies[J]. Weather and Forecasting, 2010, 25(1): 190-206.
|
46 |
TIAN Fuyou, ZHANG Xiaoling, CAO Yancha, et al. Baseline climatology of environmental parameters for three severe convective weather phenomena over middle-low areas of China [J]. Plateau Meteorology, 2022, 41(6):1 446-1 459.
|
|
田付友, 张小玲, 曹艳察, 等. 中国中低海拔地区三类强对流天气环境条件的基本气候特征[J]. 高原气象, 2022, 41(6): 1 446-1 459.
|
47 |
ZHENG L L, SUN J H, ZHANG X L, et al. Organizational modes of mesoscale convective systems over central East China[J]. Weather and Forecasting, 2013, 28(5): 1 081-1 098.
|
48 |
ROTUNNO R, KLEMP J B, WEISMAN M L. A theory for strong, long-lived squall lines[J]. Journal of the Atmospheric Sciences, 1988, 45(3): 463-485.
|
49 |
WEISMAN M L, ROTUNNO R. “A theory for strong long-lived squall lines” revisited[J]. Journal of the Atmospheric Sciences, 2004, 61(4): 361-382.
|
50 |
TAKEMI T. Environmental stability control of the intensity of squall lines under low-level shear conditions[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D24). DOI: 10.1029/2007JD008793 .
|
51 |
TAKEMI T. Convection and precipitation under various stability and shear conditions: squall lines in tropical versus midlatitude environment[J]. Atmospheric Research, 2014, 142: 111-123.
|
52 |
SKAMAROCK W C, WEISMAN M L, KLEMP J B. Three-dimensional evolution of simulated long-lived squall lines[J]. Journal of the Atmospheric Sciences, 1994, 51(17): 2 563-2 584.
|
53 |
RIDOUT J A. Sensitivity of tropical Pacific convection to dry layers at mid- to upper levels: simulation and parameterization tests[J]. Journal of the Atmospheric Sciences, 2002, 59(23): 3 362-3 381.
|
54 |
GRANT L D, van den HEEVER S C. Microphysical and dynamical characteristics of low-precipitation and classic supercells[J]. Journal of the Atmospheric Sciences, 2014, 71(7): 2 604-2 624.
|
55 |
MENG Z Y, YAN D C, ZHANG Y J. General features of squall lines in East China[J]. Monthly Weather Review, 2013, 141(5): 1 629-1 647.
|
56 |
SUN Jianhua, ZHENG Linlin, ZHAO Sixiong. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(4): 742-755.
|
|
孙建华, 郑淋淋, 赵思雄. 水汽含量对飑线组织结构和强度影响的数值试验[J]. 大气科学, 2014, 38(4): 742-755.
|
57 |
WEISMAN M L. The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems[J]. Journal of the Atmospheric Sciences, 1992, 49(19): 1 826-1 847.
|
58 |
ATKINS N T, BOUCHARD C S, PRZYBYLINSKI R W, et al. Damaging surface wind mechanisms within the 10 June 2003 saint Louis bow echo during BAMEX[J]. Monthly Weather Review, 2005, 133(8): 2 275-2 296.
|
59 |
XU X, XUE M, WANG Y. The genesis of mesovortices within a real-data simulation of a bow echo system[J]. Journal of the Atmospheric Sciences, 2015, 72(5): 1 963-1 986.
|
60 |
SMITH T M, ELMORE K L, DULIN S A. A damaging downburst prediction and detection algorithm for the WSR-88D[J]. Weather and Forecasting, 2004, 19(2): 240-250.
|
61 |
WILSON J W, SCHREIBER W E. Initiation of convective storms at radar-observed boundary-layer convergence lines[J]. Monthly Weather Review, 1986, 114(12): 2 516-2 536.
|
62 |
ROBERTS R D, WILSON J W. A proposed microburst nowcasting procedure using single-doppler radar[J]. Journal of Applied Meteorology, 1989, 28(4): 285-303.
|
63 |
YU Xiaoding. Thunderstorm and strong convection prediction[M]. Beijing: China Meteorological Press, 2020.
|
|
俞小鼎. 雷暴与强对流临近预报[M]. 北京: 气象出版社, 2020.
|
64 |
WHEATLEY D M, TRAPP R J, ATKINS N T. Radar and damage analysis of severe bow echoes observed during BAMEX[J]. Monthly Weather Review, 2006, 134(3): 791-806.
|
65 |
ZHOU A, ZHAO K, LEE W C, et al. VDRAS and polarimetric radar investigation of a bow echo formation after a squall line merged with a preline convective cell[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7). DOI: 10.1029/2019JD031719 .
|
66 |
ZHOU A, ZHAO K, LEE W C, et al. Evaluation and modification of microphysics schemes on the cold pool evolution for a simulated bow echo in southeast China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(2). DOI: 10.1029/2021JD035262 .
|
67 |
TRAPP R J, WEISMAN M L. Low-level mesovortices within squall lines and bow echoes. part II: their genesis and implications[J]. Monthly Weather Review, 2003, 131(11): 2 804-2 823.
|
68 |
ATKINS N T, LAURENT M ST. Bow echo mesovortices. part I: processes that influence their damaging potential[J]. Monthly Weather Review, 2009, 137(5): 1 497-1 513.
|
69 |
ATKINS N T, LAURENT M ST. Bow echo mesovortices. part II: their genesis[J]. Monthly Weather Review, 2009, 137(5): 1 514-1 532.
|
70 |
WAKIMOTO R M, MURPHEY H V, NESTER A, et al. High winds generated by bow echoes. part I: overview of the Omaha bow echo 5 July 2003 storm during BAMEX[J]. Monthly Weather Review, 2006, 134(10): 2 793-2 812.
|
71 |
XU X, JU Y Y, LIU Q Q, et al. Dynamics of two episodes of high winds produced by an unusually long-lived quasi-linear convective system in South China[J]. Journal of the Atmospheric Sciences, 2024, 81(8): 1 449-1 473.
|
72 |
MAHONEY K M, LACKMANN G M, PARKER M D. The role of momentum transport in the motion of a quasi-idealized mesoscale convective system[J]. Monthly Weather Review, 2009, 137: 3 316-3 338.
|
73 |
MAHONEY K M, LACKMANN G M. The sensitivity of momentum transport and severe surface winds to environmental moisture in idealized simulation of a mesoscale convective system[J]. Monthly Weather Review, 2011, 139: 1 352-1 369.
|
74 |
LIU X E, GUO X L. Role of downward momentum transport in the formation of severe surface winds[J]. Atmospheric and Oceanic Science Letters, 2012, 5: 379-383.
|
75 |
MENG Z Y, ZHANG F Q, MARKOWSKI P, et al. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China[J]. Journal of the Atmospheric Sciences, 2012, 69(4): 1 182-1 207.
|
76 |
BRYAN G H, FRITSCH J M. A benchmark simulation for moist nonhydrostatic numerical models[J]. Monthly Weather Review, 2002, 130(12): 2 917-2 928.
|
77 |
ORF L, WILHELMSON R, LEE B, et al. Evolution of a long-track violent tornado within a simulated supercell[J]. Bulletin of the American Meteorological Society, 2017, 98(1): 45-68.
|
78 |
NIELSEN E R, SCHUMACHER R S. Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices[J]. Journal of the Atmospheric Sciences, 2018, 75(9): 2 983-3 009.
|
79 |
SODERHOLM B, RONALDS B, KIRSHBAUM D J. The evolution of convective storms initiated by an isolated mountain ridge[J]. Monthly Weather Review, 2014, 142(4): 1 430-1 451.
|
80 |
SINGH I, NESBITT S W, DAVIS C A. Quasi-idealized numerical simulations of processes involved in orogenic convection initiation over the sierras de Córdoba[J]. Journal of the Atmospheric Sciences, 2022, 79(4): 1 127-1 149.
|
81 |
BROOKS H E. Proximity soundings for severe convection for Europe and the United States from reanalysis data[J]. Atmospheric Research, 2009, 93(1/2/3): 546-553.
|
82 |
TASZAREK M, ALLEN J T, PÚČIK T, et al. Severe convective storms across Europe and the United States. part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes[J]. Journal of Climate, 2020, 33(23): 10 263-10 286.
|
83 |
RASMUSSEN E N, BLANCHARD D O. A baseline climatology of sounding-derived supercell and Tornado forecast parameters[J]. Weather and Forecasting, 1998, 13(4): 1 148-1 164.
|
84 |
ALLEN J T, KAROLY D J. A climatology of Australian severe thunderstorm environments 1979-2011: inter-annual variability and ENSO influence[J]. International Journal of Climatology, 2014, 34(1): 81-97.
|
85 |
TASZAREK M, ALLEN J, PÚČIK T, et al. A climatology of thunderstorms across Europe from a synthesis of multiple data sources[J]. Journal of Climate, 2019, 32(6): 1 813-1 837.
|
86 |
INGROSSO R, LIONELLO P, MIGLIETTA M M, et al. A statistical investigation of mesoscale precursors of significant tornadoes: the Italian case study[J]. Atmosphere, 2020, 11(3). DOI:10.3390/atmos11030301 .
|
87 |
SHERBURN K D, PARKER M D. Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments[J]. Weather and Forecasting, 2014, 29(4): 854-877.
|
88 |
GATZEN C P, FINK A H, SCHULTZ D M, et al. An 18-year climatology of derechos in Germany[J]. Natural Hazards and Earth System Sciences, 2020, 20(5): 1 335-1 351.
|
89 |
ANDERSON-FREY A K, RICHARDSON Y P, DEAN A R, et al. Characteristics of tornado events and warnings in the southeastern United States[J]. Weather and Forecasting, 2019, 34(4): 1 017-1 034.
|
90 |
CORFIDI S F, CORFIDI S J, IMY D A, et al. A preliminary study of severe wind-producing MCSs in environments of limited moisture[J]. Weather and Forecasting, 2006, 21(5): 715-734.
|
91 |
MA R Y, SUN J H, YANG X L. An eight-year climatology of the warm-season severe thunderstorm environments over North China[J]. Atmospheric Research, 2021, 254. DOI:10.1016/j.atmosres.2021.105519 .
|
92 |
SCHEFFKNECHT P, SERAFIN S, GRUBIŠIĆ V. A long-lived supercell over mountainous terrain[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(709): 2 973-2 986.
|
93 |
LYZA A W, KNUPP K R. A background investigation of tornado activity across the southern cumberland plateau terrain system of northeastern Alabama [J]. Monthly Weather Review, 2018, 146(12): 4 261-4 278.
|
94 |
KIRSHBAUM D J. On upstream blocking over heated mountain ridges[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(702): 53-68.
|
95 |
BEHRENDT A, PAL S, AOSHIMA F, et al. Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(): 81-100.
|
96 |
KIRSHBAUM D J, FABRY F, CAZENAVE Q. The Mississippi valley convection minimum on summer afternoons: observations and numerical simulations[J]. Monthly Weather Review, 2016, 144(1): 263-272.
|
97 |
ADLER B, KALTHOFF N. Multi-scale transport processes observed in the boundary layer over a mountainous island[J]. Boundary-Layer Meteorology, 2014, 153(3): 515-537.
|
98 |
WILSON J W, MEGENHARDT D L. Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines[J]. Monthly Weather Review, 1997, 125(7): 1 507-1 525.
|
99 |
WILSON J W, ROBERTS R D. Summary of convective storm initiation and evolution during IHOP: observational and modeling perspective[J]. Monthly Weather Review, 2006, 134(1): 23-47.
|
100 |
WULFMEYER V, BEHREND T A, BAUER H S, et al. The convective and orographically-induced precipitation study: a research and development project of the world weather research program for improving quantitative precipitation forecasting in low-mountain regions [J]. Bulletin of the American Meteorological Society, 2008, 89: 1 477-1 486.
|
101 |
GEERTS B, PARSONS D, ZIEGLER C L, et al. The 2015 plains elevated convection at night field project[J]. Bulletin of the American Meteorological Society, 2017, 98(4): 767-786.
|
102 |
KIRSHBAUM D, ADLER B, KALTHOFF N, et al. Moist orographic convection: physical mechanisms and links to surface-exchange processes[J]. Atmosphere, 2018, 9(3). DOI:10.3390/atmos9030080 .
|
103 |
WECKWERTH T M, BENNETT L J, MILLER L JAY, et al. An observational and modeling study of the processes leading to deep, moist convection in complex terrain[J]. Monthly Weather Review, 2014, 142(8): 2 687-2 708.
|
104 |
BARTHLOTT C, ADLER B, KALTHOFF N, et al. The role of Corsica in initiating nocturnal offshore convection[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 142: 222-237.
|
105 |
KIRSHBAUM D J, WANG C C. Boundary layer updrafts driven by airflow over heated terrain[J]. Journal of the Atmospheric Sciences, 2014, 71(4): 1 425-1 442.
|
106 |
KIRSHBAUM D J, FAIRMAN J G. Cloud trails past the lesser Antilles[J]. Monthly Weather Review, 2015, 143(4): 995-1 017.
|
107 |
BARKER SCHAAF C, BANTA R M, WURMAN J. Thuderstorm-producing terrain features[J]. Bulletin of the American Meteorological Society, 1988, 69(3): 272-277.
|
108 |
WILSON J W, FENG Y R, CHEN M, et al. Nowcasting challenges during the Beijing olympics: successes, failures, and implications for future nowcasting systems[J]. Weather and Forecasting, 2010, 25(6): 1 691-1 714.
|
109 |
CHEN Mingxuan, XIAO Xian, GAO Feng. Dynamical effect of outflow boundary on localized initiation and rapid enhancement of severe convection over Beijing-Tianjin-Hebei region[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(5): 897-917.
|
|
陈明轩, 肖现, 高峰. 出流边界对京津冀地区强对流局地新生及快速增强的动力效应[J]. 大气科学, 2017, 41(5): 897-917.
|
110 |
SUN Jisong, SHI Zengyun, WANG Ling. A study on topography impacting on distribution of hail events[J]. Climatic and Environmental Research, 2006, 11(1): 76-84.
|
|
孙继松, 石增云, 王令. 地形对夏季冰雹事件时空分布的影响研究[J]. 气候与环境研究, 2006, 11(1): 76-84.
|
111 |
SUN Jisong, WANG Hua, WANG Ling, et al. The role of urban boundary layer in local convective torrential rain happening in Beijing on 10 July 2004[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(2): 221-234.
|
|
孙继松, 王华, 王令, 等. 城市边界层过程在北京2004年7月10日局地暴雨过程中的作用[J]. 大气科学, 2006, 30(2): 221-234.
|
112 |
XIAO Xian, CHEN Mingxuan, GAO Feng, et al. A thermodynamic mechanism analysis on enhancement or dissipation of convective systems from the mountains under weak synoptic forcing[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 100-124.
|
|
肖现, 陈明轩, 高峰, 等. 弱天气系统强迫下北京地区对流下山演变的热动力机制[J]. 大气科学, 2015, 39(1): 100-124.
|
113 |
QIN R, CHEN M X. Impact of a front-dryline merger on convection initiation near a mountain ridge in Beijing[J]. Monthly Weather Review, 2017, 145(7): 2 611-2 633.
|
114 |
CHEN M X, WANG Y C, GAO F, et al. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D20). DOI:10.1029/2012JD018158 .
|
115 |
MA Wenqian, LI Huahong, CHEN Xiaohua, et al. Analysis on the spatio-temporal characteristics for different types of strong winds over Yunnan[J]. Plateau Meteorology, 2025. DOI:10.7522/j.issn.1000-0534.2024.00091 .
|
|
马文倩,李华宏,陈小华,等.云南不同类型大风时空特征分析[J]. 高原气象,2025. DOI:10.7522/j.issn.1000-0534.2024.00091 .
|
116 |
JING Yu, CHEN Chuang, ZHAO Qiang, et al. Spatial-temporal distribution and meteorological conditions of thunderstorm gales in Shaanxi[J]. Journal of Arid Meteorology, 2024, 42(4):576-587.
|
|
井宇,陈闯,赵强,等.陕西雷暴大风时空分布和气象条件分析[J].干旱气象, 2024, 42(4):576-587.
|
117 |
HARRIS A R, KAHL J D W. Gust factors: meteorologically stratified climatology, data artifacts, and utility in forecasting peak gusts[J]. Journal of Applied Meteorology and Climatology, 2017, 56(12): 3 151-3 166.
|
118 |
KAHL J D W. Forecasting peak wind gusts using meteorologically stratified gust factors and MOS guidance[J]. Weather and Forecasting, 2020, 35(3): 1 129-1 143.
|
119 |
DOSWELL C A III, BROOKS H E, MADDOX R A. Flash flood forecasting: an ingredients-based methodology[J]. Weather and Forecasting, 1996, 11(4): 560-581.
|
120 |
CINTINEO J L, PAVOLONIS M J, SIEGLAFF J M, et al. The NOAA/CIMSS ProbSevere model: incorporation of total lightning and validation[J]. Weather and Forecasting, 2018, 33(1): 331-345.
|
121 |
TIAN F Y, ZHENG Y G, ZHANG T, et al. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and Eastern China[J]. Journal of Meteorological Research, 2015, 29(3): 370-384.
|
122 |
CAO Yancha, TIAN Fuyou, ZHENG Yongguang, et al. Statistical characteristics of environmental parameters for hail over the two-step terrains of China[J]. Plateau Meteorology, 2018, 37(1): 185-196.
|
|
曹艳察, 田付友, 郑永光, 等. 中国两级阶梯地势区域冰雹天气的环境物理量统计特征[J]. 高原气象, 2018, 37(1): 185-196.
|
123 |
TIAN F Y, ZHANG X L, SUN J H, et al. Climatology and pre-convection environmental conditions of dry and wet thunderstorm high winds over Eastern China[J]. Theoretical and Applied Climatology, 2024, 155(2): 1 493-1 506.
|
124 |
TIAN Fuyou, ZHENG Yongguang, SUN Jianhua, et al. Forecasting system for short-term multi-category convective phenomena combining physical understanding and fuzzy logic, part Ⅰ: system construction [J]. Meteorological Monthly, 2024, 50(5): 521-531.
|
|
田付友, 郑永光,孙建华,等. 融合物理理解与模糊逻辑的分类强对流客观短期预报系统:(1)系统构成[J]. 气象, 2024, 50(5): 521-531.
|
125 |
TIAN Fuyou, ZHENG Yongguang, JIANCAN Zhaxi, et al. Forecasting system for short-term multi-category convective phenomena combining physical understanding and fuzzy logic part Ⅱ: performance evaluation[J]. Meteorological Monthly, 2024, 50(6): 649-660.
|
|
田付友, 郑永光, 坚参扎西, 等. 融合物理理解与模糊逻辑的分类强对流客观短期预报系统: (2)表现评估[J]. 气象, 2024, 50(6): 649-660.
|
126 |
CAO Chunyan, CHEN Yuanzhao, LIU Donghua, et al. The optical flow method and its application to nowcasting[J]. Acta Meteorologica Sinica, 2015, 73(3): 471-480.
|
|
曹春燕,陈元昭,刘东华,等. 光流法及其在短临预报中的应用[J]. 气象学报,2015, 73(3): 471-480.
|
127 |
MCGOVERN A, CHASE R J, FLORA M, et al. A review of machine learning for convective weather[J]. Artificial Intelligence for the Earth Systems, 2023, 2(3). DOI:10.1175/AIES-D-22-0077.1 .
|
128 |
LAGERQUIST R, MCGOVERN A, SMITH T. Machine learning for real-time prediction of damaging straight-line convective wind[J]. Weather and Forecasting, 2017, 32(6): 2 175-2 193.
|
129 |
ZHOU K H, ZHENG Y G, LI B, et al. Forecasting different types of convective weather: a deep learning approach[J]. Journal of Meteorological Research, 2019, 33(5): 797-809.
|
130 |
LIU Y Q, YANG L, CHEN M X, et al. A deep learning approach for forecasting thunderstorm gusts in the Beijing-Tianjin-Hebei region[J]. Advances in Atmospheric Sciences, 2024, 41(7): 1 342-1 363.
|
131 |
LIANG Z M, HU Z Q. A bayes-based approach against sample imbalance to improving the potential forecasts of gale[J]. Geophysical Research Letters, 2022, 49(18). DOI:10.1029/2022GL100019 .
|
132 |
LEINONEN J, HAMANN U, GERMANN U, et al. Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance[J]. Natural Hazards and Earth System Sciences, 2022, 22(2): 577-597.
|
133 |
ASHESH A, CHANG C T, CHEN B F, et al. Accurate and clear quantitative precipitation nowcasting based on a deep learning model with consecutive attention and rain-map discrimination[J]. Artificial Intelligence for the Earth Systems, 2022, 1(3). DOI: 10.1175/AIES-D-21-0005.1 .
|